www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Borelsche sigma-Algebra
Borelsche sigma-Algebra < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borelsche sigma-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:57 So 28.04.2013
Autor: sissile

Aufgabe
Borel'sche [mm] \sigma [/mm] Algebra
Sei [mm] \Omega [/mm] = [mm] \IR^n [/mm] und
[mm] O^n [/mm] = [mm] \{ G \subset \IR^n : G offen \} [/mm]
[mm] C^n [/mm] = [mm] \{ F \subset \IR^n : F abgeschlossen \} [/mm]
[mm] K^n [/mm] = [mm] \{ K \subset \IR^n : K kompakt\} [/mm]
[mm] I^n [/mm] = [mm] \{ [a,b]: a,b \in \IQ mit a \le b komponentenweise \} [/mm]
[mm] H^n [/mm] = [mm] \{(- \infty, c] , c \in \IQ^n \} [/mm]
Dann [mm] \sigma(O^n)=\sigma(C^n)=\sigma(K^n)=\sigma(I^n)=\sigma(H^n) [/mm]
die Borelsche [mm] \sigma [/mm] ALgebra [mm] B(\IR^n) [/mm]

(Zeige [mm] \sigma(I_n) \subseteq \sigma(K^n) \subseteq \sigma (O^n), \sigma(O^n)= \sigma(G^n) [/mm] und [mm] \sigma(O^n) \subseteq \sigma(I^n), [/mm] sowie [mm] B(\IR^n)= \sigma (H^n)) [/mm]


Ich hab alles gezeigt, nur bei B [mm] (\IR^n)= \sigma (\{(-\infty,c]: c \in Q^n \}) [/mm] bin ich mir sehr unsicher.

ZZ.: [mm] K^n \subset \sigma(H) [/mm]
]a,b]= ]- [mm] \infty, [/mm] b] [mm] \setminus [/mm] ]- [mm] \infty [/mm] ,a]
[a,b]= [mm] \bigcap_{n\ge1} [/mm] ]a-1/n,b]
[mm] \sigma-Algebren [/mm] sind unter Durschnitt sowie Komplementen abgeschlossen.
Daraus folgt ganz leicht abgeschlossenheit bez. Mengendifferenz (A [mm] \setminus [/mm] B = A [mm] \cap B^c [/mm] )

ZZ.: [mm] H^n \subset B(\IR^n) [/mm]
dann dann folgt aus Minimalitätseigenschaft [mm] \sigma(H^n) \subset B(\IR^n) [/mm]
(- [mm] \infty, [/mm] c]= (- [mm] \infty, [/mm] c-1) [mm] \cup [/mm] [c-1, c]

LG


        
Bezug
Borelsche sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 05:25 So 28.04.2013
Autor: tobit09

Hallo sissile,


>  Sei [mm]\Omega[/mm] = [mm]\IR^n[/mm] und
>  [mm]O^n[/mm] = [mm]\{ G \subset \IR^n : G offen \}[/mm]
>  [mm]C^n[/mm] = [mm]\{ F \subset \IR^n : F abgeschlossen \}[/mm]
>  
> [mm]K^n[/mm] = [mm]\{ K \subset \IR^n : K kompakt\}[/mm]
>  [mm]I^n[/mm] = [mm]\{ [a,b]: a,b \in \IQ mit a \le b komponentenweise \}[/mm]
>  
> [mm]H^n[/mm] = [mm]\{(- \infty, c] , c \in \IQ^n \}[/mm]
>  Dann
> [mm]\sigma(O^n)=\sigma(C^n)=\sigma(K^n)=\sigma(I^n)=\sigma(H^n)[/mm]
>  die Borelsche [mm]\sigma[/mm] ALgebra [mm]B(\IR^n)[/mm]


> Ich hab alles gezeigt, nur bei B [mm](\IR^n)= \sigma (\{(-\infty,c]: c \in Q^n \})[/mm]
> bin ich mir sehr unsicher.

Mit [mm] $B(\IR^n)$ [/mm] meinst du sicherlich [mm] $\sigma(O^n)=\sigma(C^n)=\sigma(K^n)=\sigma(I^n)$ [/mm] (deren Gleichheit du schon gezeigt hast).


Aus deinen Bruchstücken lässt sich leicht ein sauber aufgeschriebener Beweis machen:

> ZZ.: [mm]K^n \subset \sigma(H)[/mm]

Nicht [mm] $K^n\subset\sigma(H)$, [/mm] sondern [mm] $I^n\subset\sigma(H)$ [/mm] (und somit [mm] $\sigma(I_n)\subset\sigma(H)$) [/mm] willst du offenbar zeigen.

Für alle [mm] $a,b\in \IQ$ [/mm] ist

>  ]a,b]= ]- [mm]\infty,[/mm] b] [mm]\setminus[/mm]
> ]- [mm]\infty[/mm] ,a]

ein Element von [mm] $\sigma(H)$. [/mm] (Denn:

>  [mm]\sigma-Algebren[/mm] sind unter Durschnitt

abzählbar vieler Elemente

> sowie Komplementen
> abgeschlossen.
>  Daraus folgt ganz leicht abgeschlossenheit bez.
> Mengendifferenz (A [mm]\setminus[/mm] B = A [mm]\cap B^c[/mm] )

)

Daraus folgt für alle [mm] $a,b\in\IQ$: [/mm] Für alle [mm] $n\in\IN$ [/mm] mit [mm] $n\ge1$ [/mm] gilt wegen [mm] $a-\bruch1n\in\IQ$ [/mm] die Aussage [mm] $]a-\bruch1n,b]\in\sigma(H)$. [/mm] Also ist

>  [a,b]= [mm]\bigcap_{n\ge1}[/mm] ]a-1/n,b]

ein Element von [mm] $\sigma(H)$. [/mm] (Denn:

>  [mm]\sigma-Algebren[/mm] sind unter Durschnitt

abzählbar vieler Elemente

> sowie Komplementen
> abgeschlossen.

)


> ZZ.: [mm]H^n \subset B(\IR^n)[/mm]
>  dann dann folgt aus
> Minimalitätseigenschaft [mm]\sigma(H^n) \subset B(\IR^n)[/mm]

Für alle [mm] $c\in\IQ$ [/mm] ist

>  (-
> [mm]\infty,[/mm] c]= (- [mm]\infty,[/mm] c-1) [mm]\cup[/mm] [c-1, c]

ein Element von [mm] $B(\IR^n)$, [/mm] da [mm] $(-\infty,c-1)\in O^n\subseteq B(\IR^n)$ [/mm] und [mm] $[c-1,c]\in I^n\subseteq B(\IR^n)$ [/mm] gilt.


Viele Grüße
Tobias

Bezug
                
Bezug
Borelsche sigma-Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:39 So 28.04.2013
Autor: sissile

Danke für das Zusammenflicken ;)
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]