www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstige Transformationen" - Borelsche Sigma-Algebra
Borelsche Sigma-Algebra < Sonstige < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borelsche Sigma-Algebra: Aufgabe richtig?
Status: (Frage) beantwortet Status 
Datum: 17:14 Do 02.02.2017
Autor: tobi91_nds

Aufgabe
Es Sei [mm] $E_1=\left\{\left(a,b\right);a
Zeige, dass [mm] $\sigma\left(E_1\right) [/mm] = [mm] \sigma\left(E_2\right) [/mm] = [mm] \sigma\left(E_3\right) [/mm] = [mm] \mathcal{B}\left(\mathbb{R}\right)$ [/mm] gilt.

Zur Notation: [mm] $\sigma\left(E_i\right)$ [/mm] ist der Schnitt über alle Sigma-Algebren, die [mm] $E_i$ [/mm] als Teilmenge enthalten. [mm] $\mathcal{B}\left(\mathbb{R}\right)$ [/mm] ist die Borelsche Sigma-Algebra.

Die Aufgabe scheint einfach zu sein, aber könnte trotzdem mal einer drüber gucken, ob alles einwandfrei ist? Immerhin ist das ziemlich formal, was ich aufgeschrieben habe.... Danke :)


Lösung:
[mm] $\left(1\right)$ $\mathcal{B}\left(\mathbb{R}\right)\subset\sigma\left(E_1\right)$: $\sigma\left(E_1\right)$ [/mm] enthält alle offenen Mengen, da sich jede offene Menge als abzählbare Vereinigung von offenen Intervallen schreiben lässt. Da [mm] $\mathcal{B}\left(\mathbb{R}\right)$ [/mm] die kleinste [mm] $\sigma$-Algebra [/mm] ist, die alle offenen Mengen enthält, folgt die Behauptung.

[mm] $\left(2\right)$ $\sigma\left(E_1\right)\subset\mathcal{B}\left(\mathbb{R}\right)$: $E_1$ [/mm] enthält ausschließlich offene Mengen [mm] $\Rightarrow$ $E_1\subset\mathcal{B}\left(\mathbb{R}\right)\Rightarrow\sigma\left(E_1\right)=\cap_{E_1\subset\mathcal{A}}\mathcal{A}\subset\mathcal{B}\left(\mathbb{R}\right)$ [/mm]

[mm] $\left(3\right)$ $\sigma\left(E_1\right)\subset\sigma\left(E_2\right)$: [/mm] Sei [mm] $a,b\in\mathbb{R}$ [/mm] mit $a<b$. Dann gilt: [mm] $\left(a,b\right)=\cup_{n=1}^\infty [a+\frac{b-a}{2n},b-\frac{b-a}{2n}]$. [/mm] Somit ist [mm] $E_1\subset\sigma\left(E_2\right)\Rightarrow\sigma\left(E_1\right)\subset\sigma\left(E_2\right)$ [/mm]

[mm] $\left(4\right)$ $\sigma\left(E_2\right)\subset\sigma{E_1}$: [/mm] Seien [mm] $a,b\in\mathbb{R}$ [/mm] mit $a<b$. Dann gilt [mm] $\mathbb{R} [/mm] - [mm] \left(-\infty,a\right)=\left[a,\infty\right)\in\mathcal{B}\left(\mathbb{R}\right)=\sigma\left(E_1\right)$ [/mm] und [mm] $[a,\infty)-\left(b,\infty\right)=[a,b]\in\mathcal{B}\left(\mathbb{R}\right)=\sigma\left(E_1\right)\Rightarrow E_2\subset\sigma\left(E_1\right) \Rightarrow \sigma\left(E_2\right)\subset\sigma\left(E_1\right)$. [/mm] Insgesamt also [mm] $\sigma\left(E_2\right)=\sigma\left(E_1\right)$ [/mm]

[mm] $\left(5\right)$ $\sigma\left(E_3\right)\subset\sigma\left(E_1\right)$: [/mm] Die Elemente von [mm] $E_3$ [/mm] sind offene Mengen [mm] $\Rightarrow E_3\subset\sigma\left(E1\right)=\sigma\left(E2\right)=\mathcal{B}\left(\mathbb{R}\right)\Rightarrow\sigma\left(E_3\right)\subset\sigma\left(E_1\right)$ [/mm]

[mm] $\left(6\right)$ $\sigma\left(E_1\right)\subset\sigma\left(E_3\right)$: [/mm] Seien [mm] $a,b\in\mathbb{R}$ [/mm] mit $a<b$. Es gilt: [mm] $\left(a,b\right)=\cup_{n=1}^{\infty} \left(a,b-\frac{b-a}{2n}\right]= \cup_{n=1}^{\infty} \left(\left(a,\infty\right) -\left(b-\frac{b-a}{2n},\infty\right)\right)\in\sigma\left(E_3\right)\Rightarrow E_1\subset\sigma\left(E_3\right)\Rightarrow\sigma\left(E_1\right)\subset\sigma\left(E_3\right)$ [/mm]

Insgesamt also: [mm] $\sigma\left(E_1\right)=\sigma\left(E_2\right)=\sigma\left(E_3\right)=\mathcal{B}\left(\mathbb{R}\right)$ [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Borelsche Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Do 02.02.2017
Autor: fred97


> Es Sei [mm]E_1=\left\{\left(a,b\right);a
> [mm]E_2=\left\{[a,b];a
> [mm]E_3=\left\{\left(a,\infty\right);a
>  
> Zeige, dass [mm]\sigma\left(E_1\right) = \sigma\left(E_2\right) = \sigma\left(E_3\right) = \mathcal{B}\left(\mathbb{R}\right)[/mm]
> gilt.
>  
> Zur Notation: [mm]\sigma\left(E_i\right)[/mm] ist der Schnitt über
> alle Sigma-Algebren, die [mm]E_i[/mm] als Teilmenge enthalten.
> [mm]\mathcal{B}\left(\mathbb{R}\right)[/mm] ist die Borelsche
> Sigma-Algebra.
>  Die Aufgabe scheint einfach zu sein, aber könnte trotzdem
> mal einer drüber gucken, ob alles einwandfrei ist?
> Immerhin ist das ziemlich formal, was ich aufgeschrieben
> habe.... Danke :)
>  
>
> Lösung:
>  [mm]\left(1\right)[/mm]
> [mm]\mathcal{B}\left(\mathbb{R}\right)\subset\sigma\left(E_1\right)[/mm]:
> [mm]\sigma\left(E_1\right)[/mm] enthält alle offenen Mengen, da
> sich jede offene Menge als abzählbare Vereinigung von
> offenen Intervallen schreiben lässt. Da
> [mm]\mathcal{B}\left(\mathbb{R}\right)[/mm] die kleinste
> [mm]\sigma[/mm]-Algebra ist, die alle offenen Mengen enthält, folgt
> die Behauptung.
>  
> [mm]\left(2\right)[/mm]
> [mm]\sigma\left(E_1\right)\subset\mathcal{B}\left(\mathbb{R}\right)[/mm]:
> [mm]E_1[/mm] enthält ausschließlich offene Mengen [mm]\Rightarrow[/mm]
> [mm]E_1\subset\mathcal{B}\left(\mathbb{R}\right)\Rightarrow\sigma\left(E_1\right)=\cap_{E_1\subset\mathcal{A}}\mathcal{A}\subset\mathcal{B}\left(\mathbb{R}\right)[/mm]
>  
> [mm]\left(3\right)[/mm]
> [mm]\sigma\left(E_1\right)\subset\sigma\left(E_2\right)[/mm]: Sei
> [mm]a,b\in\mathbb{R}[/mm] mit [mm]a
> [mm]\left(a,b\right)=\cup_{n=1}^\infty [a+\frac{b-a}{2n},b-\frac{b-a}{2n}][/mm].
> Somit ist
> [mm]E_1\subset\sigma\left(E_2\right)\Rightarrow\sigma\left(E_1\right)\subset\sigma\left(E_2\right)[/mm]
>  
> [mm]\left(4\right)[/mm] [mm]\sigma\left(E_2\right)\subset\sigma{E_1}[/mm]:
> Seien [mm]a,b\in\mathbb{R}[/mm] mit [mm]a
> und
> [mm][a,\infty)-\left(b,\infty\right)=[a,b]\in\mathcal{B}\left(\mathbb{R}\right)=\sigma\left(E_1\right)\Rightarrow E_2\subset\sigma\left(E_1\right) \Rightarrow \sigma\left(E_2\right)\subset\sigma\left(E_1\right)[/mm].
> Insgesamt also
> [mm]\sigma\left(E_2\right)=\sigma\left(E_1\right)[/mm]
>  
> [mm]\left(5\right)[/mm]
> [mm]\sigma\left(E_3\right)\subset\sigma\left(E_1\right)[/mm]: Die
> Elemente von [mm]E_3[/mm] sind offene Mengen [mm]\Rightarrow E_3\subset\sigma\left(E1\right)=\sigma\left(E2\right)=\mathcal{B}\left(\mathbb{R}\right)\Rightarrow\sigma\left(E_3\right)\subset\sigma\left(E_1\right)[/mm]
>  
> [mm]\left(6\right)[/mm]
> [mm]\sigma\left(E_1\right)\subset\sigma\left(E_3\right)[/mm]: Seien
> [mm]a,b\in\mathbb{R}[/mm] mit [mm]a
> [mm]\left(a,b\right)=\cup_{n=1}^{\infty} \left(a,b-\frac{b-a}{2n}\right]= \cup_{n=1}^{\infty} \left(\left(a,\infty\right) -\left(b-\frac{b-a}{2n},\infty\right)\right)\in\sigma\left(E_3\right)\Rightarrow E_1\subset\sigma\left(E_3\right)\Rightarrow\sigma\left(E_1\right)\subset\sigma\left(E_3\right)[/mm]
>  
> Insgesamt also:
> [mm]\sigma\left(E_1\right)=\sigma\left(E_2\right)=\sigma\left(E_3\right)=\mathcal{B}\left(\mathbb{R}\right)[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

ich hab nichts zu meckern, alles richtig!




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]