www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Borelmenge
Borelmenge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borelmenge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:36 Di 13.06.2006
Autor: sky

Aufgabe
Seien A [mm] \subseteq \IR^n [/mm] und B [mm] \subseteq \IR^m. [/mm]  Zeige, dass A [mm] \times [/mm] B genau dann eine Borel-Teilmenge von [mm] {\IR^n } \times {\IR^m} [/mm] = [mm] \IR^{n+m } [/mm] ist,  wenn A und B Borel sind.


Ich habe Keine Ahnung, wie man diese Aufgabe lösen kann. Ich weiss nur dass hier zu zeigen ist:  A [mm] \in [/mm] Bor( [mm] \IR^n [/mm] ) und B [mm] \in [/mm] Bor( [mm] \IR^n [/mm] ) [mm] \gdw [/mm] A [mm] \times [/mm] B [mm] \in [/mm] Bor( [mm] \IR^{n+m} [/mm] ).Für jeden kleinen Hinweis werde ich sehr dankbar sein.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Borelmenge: Lösungsansatz
Status: (Antwort) fertig Status 
Datum: 14:27 Mi 14.06.2006
Autor: just-math

Hallo,

ich versuche einfach mal einen Lösungsansatz:

Die Borel-Mengen sind ja genau die Elemente des Boole'schen Abschlusses (bezüglich Schnitt, Vereinigung und Komplement) der offenen
Mengen. Wenn nun A und B Borel sind, gibt es also eine ''Ableitung'' dieser Mengen aus offenen Teilmengen des [mm] \IR^n [/mm] mittels iterierter
Anwendung der Operationen [mm] \cap, \cup [/mm] und Komplement.

Nun würde ich versuchen zu zeigen, dass wir diese Operationen simultan anwenden können, d.h. zB für [mm] A_i\subseteq \IR [/mm] offen ist ja

[mm] A_i\times\IR [/mm] offen in [mm] \IR\times \IR, [/mm] und dann entspräche zB [mm] A_1\cap B_1 [/mm] der Operation   [mm] (A_1\times\IR)\cap (A_2\times \IR). [/mm]

So wúrd ich das probieren, also eine Art Induktionsbeweis über die Länge der ''Ableitungen''.

Viele Grüße,

just-math



Bezug
        
Bezug
Borelmenge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Fr 16.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]