www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Borel-Mengen überdecken
Borel-Mengen überdecken < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borel-Mengen überdecken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Mo 04.11.2013
Autor: Ladon

Hallo,

ich habe mal eine kurze Frage: Warum existiert zu jedem [mm] B\in\mathcal{B}^d [/mm] (B Borelmenge) eine Überdeckung aus Quadern, die aus [mm] \mathcal{Q}^d [/mm] (Menge aller Quader der Form [mm] [a_1,b_1[\times...\times[a_d,b_d[) [/mm] stammen, also [mm] B\subseteq\bigcup_{i=1}^{\infty}Q_i [/mm] mit [mm] Q_i\in\mathcal{Q}^d? [/mm]
Ich habe mir gedacht wegen [mm] [-n,n[\times...\times[-n,n[\in\mathcal{Q}^d [/mm] und [mm] \bigcup_{n=1}^{\infty}[-n,n[\times...\times[-n,n[=\IR^d [/mm] und auch [mm] B\subseteq\IR^d [/mm] folgt [mm] B\subseteq\bigcup_{n=1}^{\infty}[-n,n[\times...\times[-n,n[ [/mm] und damit die Behauptung der Existenz.
Oder liege ich da falsch?

MfG Ladon

        
Bezug
Borel-Mengen überdecken: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Mo 04.11.2013
Autor: fred97


> Hallo,
>  
> ich habe mal eine kurze Frage: Warum existiert zu jedem
> [mm]B\in\mathcal{B}^d[/mm] (B Borelmenge) eine Überdeckung aus
> Quadern, die aus [mm]\mathcal{Q}^d[/mm] (Menge aller Quader der Form
> [mm][a_1,b_1[\times...\times[a_d,b_d[)[/mm] stammen, also
> [mm]B\subseteq\bigcup_{i=1}^{\infty}Q_i[/mm] mit
> [mm]Q_i\in\mathcal{Q}^d?[/mm]
>  Ich habe mir gedacht wegen
> [mm][-n,n[\times...\times[-n,n[\in\mathcal{Q}^d[/mm] und
> [mm]\bigcup_{n=1}^{\infty}[-n,n[\times...\times[-n,n[=\IR^d[/mm] und
> auch [mm]B\subseteq\IR^d[/mm] folgt
> [mm]B\subseteq\bigcup_{n=1}^{\infty}[-n,n[\times...\times[-n,n[[/mm]
> und damit die Behauptung der Existenz.
>  Oder liege ich da falsch?

nein, Du liegst nicht falsch.

FRED

>  
> MfG Ladon


Bezug
                
Bezug
Borel-Mengen überdecken: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Mo 04.11.2013
Autor: Ladon

Vielen Dank für deine Bestätigung.

MfG Ladon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]