www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Boolesche Algebra
Boolesche Algebra < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Boolesche Algebra: Frage
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 30.05.2005
Autor: lnx

Hallo,

Zu zeigen ist, dass die Menge der pfeilfreien aussagenlogischen Ausdrückke ein distributiver, komplementärer Verband (Boolesche Algebra) ist.
Ich würde die Kommutativität. Assoziativität, Absorption, Distributivität, Existenz des Eins-Element, Null-Element  mittels vollständiger Induktion über die Ausdrucksstufe beweisen, allerdings erscheint mir das ein bisschen viel Arbeitsaufwand.
Gibt es vielleicht noch andere Lösungsansätze?

Vielen Dank im Voraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Boolesche Algebra: nicht ganz sicher...
Status: (Antwort) fertig Status 
Datum: 23:02 Mo 30.05.2005
Autor: Bastiane

Hallo!
> Zu zeigen ist, dass die Menge der pfeilfreien
> aussagenlogischen Ausdrückke ein distributiver,
> komplementärer Verband (Boolesche Algebra) ist.
>  Ich würde die Kommutativität. Assoziativität, Absorption,
> Distributivität, Existenz des Eins-Element, Null-Element  
> mittels vollständiger Induktion über die Ausdrucksstufe
> beweisen, allerdings erscheint mir das ein bisschen viel
> Arbeitsaufwand.
> Gibt es vielleicht noch andere Lösungsansätze?

Bei uns waren die Formulierungen etwas anders und ich bin schon etwas aus dem Thema raus und es ist auch schon wieder etwas spät - also sorry für evtl. Fehler meinerseits.

Aber weiß man nicht, dass die Menge [mm] \{\neg,\vee\} [/mm] eine Boolesche Algebra ist? Und da man jede aussagenlogische Verknüpfung auf diese Menge zurückführen kann, müsste das Ganze doch damit bewiesen sein, oder? Dasselbe ginge natürlich auch mit [mm] \{\neg,\wedge\} [/mm]

Viele Grüße
Bastiane
[banane]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]