www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Boolesche Algebra
Boolesche Algebra < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Boolesche Algebra: Frage
Status: (Frage) beantwortet Status 
Datum: 13:23 Di 07.12.2004
Autor: andreas99

Hi,

Vereinfache folgenden Mengenausdruck:

A [mm] \wedge (\bruch{(A \vee B)}{B}) [/mm]

Ergebnis hab ich auch hier stehen:

= A [mm] \wedge (\bruch{(A \vee B)}{C}) [/mm]
= A [mm] \wedge (\bruch{A}{B}) [/mm]
= [mm] \bruch{A}{B} [/mm]      nach Definition von Vereinigung, Durchschnitt und Differenz

Ich hab aber keine Ahnung wie die darauf kommen. Ich kenne die Grundrechenregeln der Booleschen Algebra (Assoziativgesetz, Kommutativgesetz, Absorptionsgesetz, Distributivgesetz, Null und Eins, Komplement), aber da kommt nirgendwo ein [mm] \bruch{A}{B} [/mm] oder so vor. Wie steht der Bruch im Kontext zu diesen Gesetzen? Gibt es vielleicht noch andere (weiter geleitete) Gesetze die nicht in meinem Buch stehen, die ich hier brauche? Zudem frage ich mich warum aus dem B unterm Bruchstrich plötzlich ein C wird, welches vorher nicht da war? Ist das so richtig oder ein Tippfehler?

Wie man die Elemente der Menge eines Bruches berechnet ist mir klar. Beispiel:

A={1,3,5,7,9,11,13,15}
C={2,3,5,12,13}
[mm] \bruch{C}{A}= [/mm] {2,12}

In wie weit hilft mir diese Erkenntnis jetzt oben weiter? Vielleicht kann mir jemand das Stichwort nennen nach dem ich suchen muss?

Gruß
Andreas

        
Bezug
Boolesche Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Di 07.12.2004
Autor: epsilon_delta

Hi...

Ich bin noch neu hier, und hoffe, mir wird verziehen, dass ich mit der Formatierung des Textes noch nicht vertraut bin...
Aber zur Sache:

Zunächst zur Notation und den Begrifflichkeiten:
logisches Oder: [mm] \vee [/mm]  
logisches Und: [mm] \wedge [/mm]
Negation: [mm] \neg D \gdw \overline{D} [/mm]
Differenz: [mm] \bruch{C}{D} \gdw ( C \wedge \overline{D} )[/mm]


Dann gilt:

[mm] A \wedge \left( \bruch{A \vee B}{B} \right) [/mm]
[mm]= A \wedge \left( (A\vee B) \wedge \overline{B} \right) [/mm]
[mm]= A \wedge \left( (A \wedge \overline{B}) \vee (B \wedge \overline{B}) \right) [/mm]  (Distributivgesetz)
[mm]= A \wedge \left( (A \wedge \overline{B}) \vee 0 \right)[/mm]
[mm]= A \wedge \left( A \wedge \overline{B}\right)[/mm]
[mm]= \left( A \wedge A \right) \wedge \overline{B}[/mm]  (Assoziativgesetz)
[mm]= A \wedge \overline{B}[/mm]
[mm]= \bruch{A}{B} [/mm]

Ich hoffe, das hilft weiter...


LG,

epsilon_delta

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]