www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Bogenlänge einer Kurve
Bogenlänge einer Kurve < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlänge einer Kurve: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:55 Di 07.03.2006
Autor: foxi

Aufgabe
Sei die Kurve [mm] r(\varphi) [/mm] := [mm] 1 + \cos(\varphi)[/mm] , [mm] \varphi \in [ 0 , 2\pi ] [/mm] in Polarkoordinaten
gegeben.
a) Bestimmen Sie die Symmetrie(n) der Kurve.
b) Berechnen Sie die Bogenlänge der Kurve von [mm] \varphi [/mm] = 0 bis [mm] \varphi [/mm] = [mm] 2\pi. [/mm]  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Also a) müsste doch eigentlich symmetrisch zur y-Achse sein. In der Musterlösung steht aber symmetrisch zur x-Achse. Warum?
Bei b) komm ich nur bis  [mm] 2* \integral_{0}^{2\pi} \cos (\bruch{\varphi}{2}) [/mm]
Wie geht es jetzt weiter hab absolut keinen Plan.

        
Bezug
Bogenlänge einer Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Di 07.03.2006
Autor: mathmetzsch

Hallo,

wie berechnest du denn die Bogenlänge? Da muss doch noch etwas mit einer Wurzel kommen?! Ich habe etwas anderes raus!

VG Daniel



Bezug
                
Bezug
Bogenlänge einer Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:13 Di 07.03.2006
Autor: foxi

Erstmal [mm] \wurzel{r^2 + r'^2} [/mm]
= [mm]\wurzel{1 + 2\cos(\varphi) + \cos^2(\varphi) + \sin^2(\varphi)} [/mm]
= [mm] \wurzel{2 + 2\cos(\varphi)} [/mm]
Da jetzt 1+cos = [mm] 2\cos^2(\bruch{\varphi}{2}) [/mm]
--> [mm] \integral_{0}^{2\pi} \wurzel{4\cos^2(\bruch{\varphi}{2})} [/mm]
= [mm] \integral_{0}^{2\pi} 2\cos(\bruch{\varphi}{2}) [/mm] und dann die 2 vor dem cos vor das Integral ziehen.

Bezug
        
Bezug
Bogenlänge einer Kurve: zum Integral (Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 17:28 Di 07.03.2006
Autor: Roadrunner

Hallo foxi!


Bei dem entstandenen Integral musst Du nun substituieren: $t \ := \ [mm] \bruch{\varphi}{2}$ [/mm] .


Damit wird dann:

[mm]2* \integral_{0}^{2\pi}{\cos\left(\bruch{\varphi}{2}\right) \ d\varphi} \ = \ 2* \integral_{0}^{\pi}{\cos\left(t\right) \ 2*dt} \ = \ 4* \integral_{0}^{\pi}{\cos\left(t\right) \ dt} \ = \ ...[/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Bogenlänge einer Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Di 07.03.2006
Autor: foxi

Also erhalte ich dann:
8 * [ [mm] \sin(\bruch{\varphi}{2}) ]_0^{\pi} [/mm] = 8
Oder hab ich irgendwo einen Denkfehler?
Was ist mit der Symmetrie?

Bezug
                        
Bezug
Bogenlänge einer Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:01 Di 07.03.2006
Autor: Leopold_Gast

Du hast das richtige Ergebnis, aber einen falschen Weg. Irgendwie heben sich deine Rechenfehler gegenseitig weg. Beachte:

[mm]2 \int_0^{2 \pi}~\cos{\frac{\varphi}{2}}~\mathrm{d}\varphi \ = \ 0[/mm]

Und das kann ja bei der Bogenlänge nicht herauskommen. Der Hauptfehler ist schon vorher passiert:

[mm]\int_0^{2 \pi}~\sqrt{4 \cos^2{\frac{\varphi}{2}}}~\mathrm{d}\varphi \ = \ \int_0^{2 \pi}~2 \left| \cos{\frac{\varphi}{2}} \right|~\mathrm{d}\varphi[/mm]

Um nun Fallunterscheidungen zu vermeiden, nützt man die Symmetrie der Kurve aus und integriert nur von 0 bis [mm]\pi[/mm]. In diesem Bereich können dann die Betragsstriche entfallen.

Bezug
                                
Bezug
Bogenlänge einer Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Di 07.03.2006
Autor: foxi

Danke euch allen!

Bezug
        
Bezug
Bogenlänge einer Kurve: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Sa 11.03.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]