www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Bogenlänge Federkurve
Bogenlänge Federkurve < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlänge Federkurve: Ansatzlos
Status: (Frage) beantwortet Status 
Datum: 01:59 Mi 30.03.2011
Autor: mwieland

Aufgabe
Man betrachte die folgende Federkurve:

[mm] \vec{x}(t) [/mm] = [mm] \vektor{t² \\ cos(2t) \\ sin(2t)} [/mm]  mit t [mm] \in [0,2\pi] [/mm]

Berechnen Sie die Bogenlänge folgender Kurve!

Ich bräuchte bitte hilfe beim Ansatz bzw. nochmal eine genau Erklärung, wie das mit den Bogenlängen grundsätzlich funtioniert, da dies in der Vorlesung nicht sehr gut erklärt wurde und das Skriptum auch sehr wenig aussagekräftiges zu bieten hat!

dank im vorraus,

lg mark

        
Bezug
Bogenlänge Federkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 03:31 Mi 30.03.2011
Autor: Fulla

Hallo mwieland,

siehe meine Antwort auf deine andere Frage:
Für die Bogenlänge [mm]s[/mm] einer Kurve [mm]x(t)=\vektor{x_1\\ x_2\\ x_3}[/mm] auf dem Interval [a,b] gilt:
[mm]s=\int_a^b\sqrt{x_1^\prime(t)^2+x_2^\prime(t)^2+x_3^\prime(t)^2}dt[/mm].

Wenn du nicht weiterkommst, rechne hier mal vor was du hast und frag erneut nach.


Lieben Gruß,
Fulla


Bezug
                
Bezug
Bogenlänge Federkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Mi 30.03.2011
Autor: mwieland

ich komme nun auf folgendes integral, wenn ich in die formel einsetze:

[mm] \integral_{0}^{2\pi}{\wurzel{(2t)^{2}+(-2sin(2t))^{2}+(2cos(2t))^{2}} dt} [/mm]

könnte mir da jemand bitte beim ansatz behilflich sein, dieses integral zu lösen?

danke im vorraus, mark

Bezug
                        
Bezug
Bogenlänge Federkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mi 30.03.2011
Autor: schachuzipus

Hallo Mark,

> ich komme nun auf folgendes integral, wenn ich in die
> formel einsetze:
>
> [mm]\integral_{0}^{2\pi}{\wurzel{(2t)^{2}+(-2sin(2t))^{2}+(2cos(2t))^{2}} dt}[/mm] [ok]
>
> könnte mir da jemand bitte beim ansatz behilflich sein,
> dieses integral zu lösen?

Na, wie das immer so geht, Quadrate ausrechnen, dann 4 ausklammern und aus der Wurzel holen, vor das Integral ziehen und den trig. Pythagoras benutzen [mm]\sin^2(z)+\cos^2(z)=1[/mm]

Das vereinfacht sich recht stark ...

>
> danke im vorraus, mark

Ein "r" genügt völlig ;-)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]