www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Bogenlaenge
Bogenlaenge < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlaenge: Kurve
Status: (Frage) beantwortet Status 
Datum: 16:07 Mi 19.02.2014
Autor: sonic5000

Hallo,
Es geht um die Formel für die Bogenlaenge einer ebenen Kurve.
Die soll über den Pythagoras und ein infinitesimales kurzes Kurvenstueck berechnet werden.

[mm] (ds)^2=(dx)^2+(dy)^2=(dx)^2+(dy)^2*\br{(dx)^2}{(dx)^2} [/mm]

ds=hypothenuse, dx=Ankathete, dy=Gegenkathete

Nach Umstellen und Integration kommt man dann auf:

[mm] s=\integral_{a}^{b}{\wurzel{1+(y')^2}dx} [/mm]

Den Weg habe ich formal verstanden... Was ich nicht verstanden habe ist der Term:

[mm] \bruch{(dx)^2}{(dx)^2} [/mm]

Wozu braucht man den?
Kann mir jemand dazu was schreiben?

LG und besten Dank im Voraus...





        
Bezug
Bogenlaenge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mi 19.02.2014
Autor: abakus


> Hallo,
> Es geht um die Formel für die Bogenlaenge einer ebenen
> Kurve.
> Die soll über den Pythagoras und ein infinitesimales
> kurzes Kurvenstueck berechnet werden.

>

> [mm](ds)^2=(dx)^2+(dy)^2=(dx)^2+(dy)^2*\br{(dx)^2}{(dx)^2}[/mm]

>

> ds=hypothenuse, dx=Ankathete, dy=Gegenkathete

>

> Nach Umstellen und Integration kommt man dann auf:

>

> [mm]s=\integral_{a}^{b}{\wurzel{1+(y')^2}dx}[/mm]

>

> Den Weg habe ich formal verstanden... Was ich nicht
> verstanden habe ist der Term:

>

> [mm]\bruch{(dx)^2}{(dx)^2}[/mm]

>

> Wozu braucht man den?
> Kann mir jemand dazu was schreiben?

Hallo,
man benötigt diese Erweiterung, um aus [mm](dy)^2[/mm] den Teilterm [mm](dy)^2*\br{(dx)^2}{(dx)^2}=\red{\br{(dy)^2}{(dx)^2}}*(dx)^2=\red{(f`(x))^2}*(dx)^2[/mm] zu erzeugen.
Gruß Abakus

>

> LG und besten Dank im Voraus...

>
>
>
>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]