Bivariate Gleichverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:17 Do 18.04.2013 | Autor: | DominikF |
Aufgabe | Übung: Bivariate Gleichverteilung
X und Y bivariat gleichverteilt auf [−1,1] × [−1,1]
• Berechne die Wahrscheinlichkeit, dass max{|X|,|Y |} < 1/2.
• Berechne die Wahrscheinlichkeit, dass
[mm] X^2+ Y^2< [/mm] 1.
Hinweis: Im Falle der bivariaten Gleichverteilung ist eine formale
Integration nicht wirklich notwendig. Berechnung von
Wahrscheinlichkeiten ergibt sich unmittelbar durch Vergleich von
Flächen. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe leider keine Vorlesung zu diesem Thema (hab im Sommersemster angefangen) und ich verstehe einfach nicht was ich machen soll. Außerdem ist mein Wissen über Integralrechnung überaus beschränkt.
Ich würde mich freuen wenn mir jemand erklären könnte wie man diese Aufgaben angeht.
Mir ist auch noch ein Beispiel mitgegeben worden:
Beispiel: Bivariate Gleichverteilung
X und Y bivariat gleichverteilt auf [0,1] × [0,1] ⇒ Dichte
f(x, y) = 1, 0 ≤ x, y ≤ 1.
Gemeinsame Verteilungsfunktion
F(a, b) = ∫b y=0 ∫a x=0 f(x, y) dxdy = a b, 0 ≤ a, b ≤ 1.
Dichte der Randverteilung:
fX(x) = ∫∞ y=−∞ f(x, y) dy = 1, 0 ≤ x ≤ 1
gibt Dichte der univariaten Gleichverteilung
Liebe Grüße
Dominik
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:37 Do 18.04.2013 | Autor: | luis52 |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Moin Dominik,
Die Dichte kannst du dir als obere Flaeche eines Blocks der Hoehe 1/4 oberhalb der Menge $\mathcal{M}=[-1,1] \times [-1,1] $ vorstellen.
Bei der ersten Teilaufgabe musst du die Teilmenge $\mathcal{M}_1=\{(x,y)\mid \max\{|x|,|y|\} < 1/2\}$ in $\mathcal{M}$ bestimmen. Eine Skizze koennte hilfreich sein. Die gesuchte Wsk ist $\text{Flaeche}(\mathcal{M}_1})/4$ (Grundflaeche $\times$ Hoehe).
Die zweite Teilaufgabe verlaeuft analog, $\mathcal{M}_2$ ist hier m.E. ein Kreis.
vg Luis
|
|
|
|