www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Bipartiter Graph
Bipartiter Graph < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bipartiter Graph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Sa 14.01.2012
Autor: Schokokuchen

Aufgabe
Zeige: Ein Graph G ist genau dann bipartit, wenn jede geschlossene Wanderung in G gerade Länge hat.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die eine Richtung ist klar:

Sei G bipartit. Dann können wir die Knoten des Graphen so einfärben, dass jede Kante einen roten mit einem blauen Knoten verbindet. Eine geschlossene Wanderung durchläuft dann abwechselnd einen roten und einen blauen Knoten. Damit Anfangs- und End- Knoten (wie für geschlossene Wanderung notwendig) die selbe Farbe haben, muss die Länge der Wanderung also Vielfaches von 2 sein.

Allerdings weiß ich nicht, wie ich zeige, dass ein Graph in dem alle geschlossene Wanderungen gerade Läge haben, bipartit ist. Kann mir da jemand helfen?

        
Bezug
Bipartiter Graph: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 15.01.2012
Autor: hippias


> Zeige: Ein Graph G ist genau dann bipartit, wenn jede
> geschlossene Wanderung in G gerade Länge hat.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Die eine Richtung ist klar:
>  
> Sei G bipartit. Dann können wir die Knoten des Graphen so
> einfärben, dass jede Kante einen roten mit einem blauen
> Knoten verbindet. Eine geschlossene Wanderung durchläuft
> dann abwechselnd einen roten und einen blauen Knoten. Damit
> Anfangs- und End- Knoten (wie für geschlossene Wanderung
> notwendig) die selbe Farbe haben, muss die Länge der
> Wanderung also Vielfaches von 2 sein.
>  
> Allerdings weiß ich nicht, wie ich zeige, dass ein Graph
> in dem alle geschlossene Wanderungen gerade Läge haben,
> bipartit ist. Kann mir da jemand helfen?

Wenn $G$ zusammenhaengend ist,dann wuerde ich folgendes versuchen: Sei $a$ eine beliebige Ecke. Definiere $X:= [mm] \{x\in G|\text{$x$ hat geraden Abstand zu $a$}\}$ [/mm] und $Y:= [mm] G\setminus [/mm] X$; also $Y$ ist die Menge der Elemente, die zu $a$ ungeraden Abstand haben. Wenn z.B. [mm] $r,s\in [/mm] Y$, dann existieren Pfade ungerader Laenge von $a$ nach $r$ und von $a$ nach $s$. Waeren $r$ und $s$ verbunden, dann haette man einen geschlossen Pfad der Laenge ungerade+ungerade$+1$= ungerade.

P.S. Mmmmh, Schokokuchen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]