www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Biot Savart
Biot Savart < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Biot Savart: Vektoren korrekt?
Status: (Frage) beantwortet Status 
Datum: 11:55 Do 15.07.2010
Autor: FrankZane

Aufgabe
Gegeben ist die rechts abgebildete Anordnung mit dem Winkel
α in der x-y-Ebene. Auf dem dargestellten Leiterst¨uck der L¨ange
2L fließt der Strom I.
a)  Berechnen Sie mit dem Biot-Savart-Gesetz den Beitrag dieses
Leiterst¨ucks zur magnetischen Flussdichte
~
B P im Punkt P =
(0, 0, z 0 ) auf der hier nicht dargestellten z-Achse, mit z 0 > 0.

http://www.bilder-hochladen.net/files/eom3-7-jpg-nb.html

Hallo, ich bin gerade dabei eine Aufgabe zu Biot Savart zu rechnen allerdings bin ich mir unsicher, ob meine Vektoren richtig sind?

für dl' habe ich: [mm] [cos(\alpha)*dlx; sin(\alpha)*dly;0] [/mm]
für r(z0) habe ich: (0,0,z0)
und r' = dl'

Kann mir jemand sagen, ob das soweit richtig ist, damit ich das mal durchrechnen kann?

Grüße

        
Bezug
Biot Savart: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Fr 16.07.2010
Autor: leduart

Hallo
was soll denn dlx sein? mit einfach dl ists richtitig
gruss leduart

Bezug
                
Bezug
Biot Savart: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:31 Fr 16.07.2010
Autor: FrankZane

Hallo,
das "x" sollte eigentlich nur ein Indize darstellen, aber ich wusste nicht ob/wie man das hier tiefstellen kann.
Nagut, dann werde ich das erstmal durchrechnen.

Bezug
                        
Bezug
Biot Savart: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Fr 16.07.2010
Autor: FrankZane

Kann mir bis hierher mal jemand sagen, ob das richtig ausschaut, das wäre ganz nice ;)

[mm] B(z_o) [/mm] = [mm] \mu0*I/4\pi *\integral [/mm] dl X [mm] (r[z_0]-r') [/mm] / [mm] |r[z_0]-r'^3| [/mm]

r(zo)-r' = [mm] \vektor{0 \\ 0\\z_0} [/mm] - [mm] \vektor{cos(\alpha)dl \\ \sin(\alpha)dl\\0} [/mm] = [mm] \vektor{-cos(\alpha)dl \\ -sin(\alpha)dl\\z_0} [/mm]

dl X  [mm] (r(z_0)-r') [/mm] = [mm] \vektor{cos(\alpha)dl \\ \sin(\alpha)dl\\0} [/mm] X [mm] \vektor{-cos(\alpha)dl \\ -sin(\alpha)dl\\z_0} [/mm] = [mm] \vektor{z_0sin(\alpha)dl-0 \\ 0 - z_0 * cos(\alpha)dl\\cos(\alpha)dl*(-sin(\alpha)dl-sin(\alpha)dl) *(-cos(\alpha)dl)} [/mm] = [mm] \vektor{z_0sin(\alpha)dl \\ - z_0 * cos(\alpha)dl\\0} [/mm]

-> [mm] B(z_o) [/mm] = [mm] \mu0*I/4\pi [/mm] * [mm] \vektor{z_0sin(\alpha)dl \\ - z_0 * cos(\alpha)dl\\0} \integral_{L1}^{L2} [/mm] * dl [mm] /\wurzel{cos^2(\alpha) dl^2 + sin^2(\alpha)dl^2 +z_0^2} [/mm]


Bezug
                                
Bezug
Biot Savart: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Sa 17.07.2010
Autor: leduart

Hallo
Ich komm mit dem , was du da machst nicht zurecht.
da steht dl im Nenner? was hat dl in r' zu suchen?
schreib vielleicht erstmal auf, was rauskommt, wenn L in x- Richtung, oder y- Richtung fliesst, wenn es dann unter [mm] \alpha [/mm] fliesst, ndert sich doch nur der Winkel von B eben auch um [mm] \alpha. [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]