www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Binomischer Lehrsatz
Binomischer Lehrsatz < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomischer Lehrsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Mi 24.10.2012
Autor: Pflaume007

Aufgabe
Beweisen Sie unter Verwendung des binomischen Lehrsatzes für beliebige positive reelle Zahlen a, b und n [mm] \in \IN [/mm] die Ungleichungen
[mm] |\wurzel[n]{a} [/mm] - [mm] \wurzel[n]{b}| \le \wurzel[n]{|a - b|} \le \wurzel[n]{a + b} \le \wurzel[n]{a} [/mm] + [mm] \wurzel[n]{b} [/mm]

1. Teil: (mit Quadrierung des Betrages)
[mm] |\wurzel[n]{a} [/mm] - [mm] \wurzel[n]{b}| [/mm] = [mm] a^{\bruch{2}{n}} [/mm] - 2 [mm] a^{\bruch{1}{n}} b^{\bruch{1}{n}} [/mm] + [mm] b^{\bruch{2}{n}} \le \summe_{k=0}^{\bruch{2}{n}} \vektor{\bruch{2}{n} \\ k} a^{k} (-b)^{n - k} [/mm] = [mm] \wurzel[n]{|a - b|} [/mm]
2. Teil:
[mm] \wurzel[n]{|a - b|} [/mm] = [mm] \summe_{k=0}^{\bruch{2}{n}} \vektor{\bruch{2}{n} \\ k} a^{k} (-b)^{n - k} \le \summe_{k=0}^{\bruch{1}{n}} \vektor{\bruch{1}{n} \\ k} a^{k} b^{n - k} [/mm] = [mm] \wurzel[n]{a + b} [/mm]
3. Teil:
[mm] \wurzel[n]{a + b} [/mm] = [mm] \summe_{k=0}^{\bruch{1}{n}} \vektor{\bruch{1}{n} \\ k} a^{k} b^{n - k} \le \wurzel[n]{a} [/mm] + [mm] \wurzel[n]{b} [/mm]

Das ist mein Lösungsweg. Jedoch bin ich mir unsicher, ob er mathematisch korrekt bzw. nachvollziehbar ist, und ich hierbei alles richtig angewendet habe. Ich bin für jede Hilfe dankbar. :)


        
Bezug
Binomischer Lehrsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Mi 24.10.2012
Autor: fred97


> Beweisen Sie unter Verwendung des binomischen Lehrsatzes
> für beliebige positive reelle Zahlen a, b und n [mm]\in \IN[/mm]
> die Ungleichungen
>  [mm]|\wurzel[n]{a}[/mm] - [mm]\wurzel[n]{b}| \le \wurzel[n]{|a - b|} \le \wurzel[n]{a + b} \le \wurzel[n]{a}[/mm]
> + [mm]\wurzel[n]{b}[/mm]
>  1. Teil: (mit Quadrierung des Betrages)
> [mm]|\wurzel[n]{a}[/mm] - [mm]\wurzel[n]{b}|[/mm] = [mm]a^{\bruch{2}{n}}[/mm] - 2
> [mm]a^{\bruch{1}{n}} b^{\bruch{1}{n}}[/mm] + [mm]b^{\bruch{2}{n}} \le \summe_{k=0}^{\bruch{2}{n}} \vektor{\bruch{2}{n} \\ k} a^{k} (-b)^{n - k}[/mm]
> = [mm]\wurzel[n]{|a - b|}[/mm]
>  2. Teil:
> [mm]\wurzel[n]{|a - b|}[/mm] = [mm]\summe_{k=0}^{\bruch{2}{n}} \vektor{\bruch{2}{n} \\ k} a^{k} (-b)^{n - k} \le \summe_{k=0}^{\bruch{1}{n}} \vektor{\bruch{1}{n} \\ k} a^{k} b^{n - k}[/mm]
> = [mm]\wurzel[n]{a + b}[/mm]
> 3. Teil:
> [mm]\wurzel[n]{a + b}[/mm] = [mm]\summe_{k=0}^{\bruch{1}{n}} \vektor{\bruch{1}{n} \\ k} a^{k} b^{n - k} \le \wurzel[n]{a}[/mm]
> + [mm]\wurzel[n]{b}[/mm]
>  
> Das ist mein Lösungsweg. Jedoch bin ich mir unsicher, ob
> er mathematisch korrekt bzw. nachvollziehbar ist, und ich
> hierbei alles richtig angewendet habe. Ich bin für jede
> Hilfe dankbar. :)
>  


Das stimmt alles nicht. Der binomische Satz [mm] (x+y)^n [/mm] = ...  gilt nur für Exponenten n [mm] \in \IN. [/mm]


FRED

Bezug
                
Bezug
Binomischer Lehrsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Mi 24.10.2012
Autor: Pflaume007

Alles klar, hast du einen Tipp, wie ich an das Ganze herangehen soll?

Bezug
                        
Bezug
Binomischer Lehrsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 Mi 24.10.2012
Autor: leduart

Hallo
nimm die Ungleichungen hoch n oder 2n
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]