www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Binominalkoeffizient
Binominalkoeffizient < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binominalkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mi 18.02.2004
Autor: curie

Hallo,

wie und wieso bestimme ich die Anzahl der Kombinationsmöglichkeiten von 3 weißen und 7 schwarzen Kugeln (Anordnung in einer Reihe mit 10 Plätzen) mit dem Binominalkoeffizieten?

Danke schonmal!
Curie

        
Bezug
Binominalkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mi 18.02.2004
Autor: Stefan

Hallo Curie!

Ich versuche dir mal zu helfen.

Ich bezeichne mal die drei weißen Kugeln mit [mm]\blue{w_1}[/mm], [mm]\blue{w_2}[/mm] und [mm]\blue{w_3}[/mm] sowie die sieben schwarzen Kugeln mit [mm]\green{s_1}[/mm], [mm]\green{s_2}[/mm], [mm]\ldots,[/mm] [mm]\green{s_7}[/mm].

Eine mögliche Anordnung ist dann

[mm]\blue{w_1\, w_2\, w_3}\, \green{s_1\, s_2\, s_3\, s_4\, s_5\, s_6\, s_7}[/mm]

Wieviele solcher Anordnungen gibt es, wenn man alle Kugeln unterscheiden kann?

Für die erste Position gibt es 10 Möglichkeiten, für die zweite verbleiben 9 (da man die erste ja schon belegt hat), für die dritte 8 (da man die ersten beiden schon belegt hat), usw.

Insgesamt gibt es also

[mm]10! = 10*9*8*\ldots *1[/mm]

Möglichkeiten die Kugeln zu vertauschen.

Aber halt! Wir haben dabei einen Fehler gemacht!

Wir können ja die weißen und schwarzen Kugeln untereinander gar nicht unterscheiden. Die beiden Anordnungen

[mm]\blue{w_1\, w_3\, w_1}\, \green{s_6\, s_5\, s_3\, s_7\, s_4\, s_1\, s_2}[/mm]

und

[mm]\blue{w_3\, w_2\, w_1}\, \green{s_6\, s_3\, s_7\, s_5\, s_1\, s_2\, s_4}[/mm]

zum Beispiel sind also völlig gleichwertig, wir haben sie aber bisher als verschieden angesehen.

Wieviele gleichwertige Anordnungen gibt es nun zu einer festen Anordnung?

Nehmen wir uns mal die ursprüngliche Anordnung, diese hier:

[mm]\blue{w_1\, w_2\, w_3}\, \green{s_1\, s_2\, s_3\, s_4\, s_5\, s_6\, s_7}[/mm]

Mit dem gleichen Argument wie eben kann man die drei weißen Kugeln auf [mm]3![/mm] Arten vertauschen und sieben schwarzen Kugeln auf [mm]7![/mm] Arten vertauschen.

Insgesamt gibt es also zu jeder Anordnung

[mm]3!\cdot 7![/mm]

gleichwertige Anordnung.

Wenn es aber insgesamt [mm]10![/mm] Möglichkeiten der Anordnung gibt und zu jeder Anordnung [mm]3!\cdot 7![/mm] äquivalente, also ununterscheidbare, Anordnungen, dann  gibt es doch insgesamt

[mm]\frac{10!}{3!\cdot 7!}[/mm]

nicht unterscheidbare Möglichkeiten, an denen wir ja interessiert waren.

Es gilt aber gerade

[mm]{10 \choose 3} = \frac{10!}{3!\cdot 7!} = {10 \choose 7},[/mm]

womit das Zustandekommen des Binomialkoeffizienten erklärt wäre.

Verstanden? :-)

Sonst bitte nachfragen...

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]