www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Binomialkoeffizienten herausfi
Binomialkoeffizienten herausfi < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizienten herausfi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Mi 17.11.2010
Autor: dreamweaver

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.uni-protokolle.de/foren/viewtopic.php?p=2162221#2162221

Hallo,
kann mir bitte bei folgender Aufgabe helfen:

Bestimmen Sie den Koeffizient x y [mm] z^4 [/mm] von [mm] (3x-4y+3z)^6 [/mm]

Das mach ich doch mit folgender Form oder:

[Dateianhang nicht öffentlich]

Ich weiß nun aus einem anderen Forum, dass k = 2 und j = 1 ist, aber weshalb das so ist weiß ich leider noch immer nicht. Ich hoffe ihr könnt mir das sagen.

Vielen Dank im Voraus!

mfg

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Binomialkoeffizienten herausfi: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 Do 18.11.2010
Autor: felixf

Moin!

> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> http://www.uni-protokolle.de/foren/viewtopic.php?p=2162221#2162221
>  
> Hallo,
>  kann mir bitte bei folgender Aufgabe helfen:
>  
> Bestimmen Sie den Koeffizient x y [mm]z^4[/mm] von [mm](3x-4y+3z)^6[/mm]
>
> Das mach ich doch mit folgender Form oder:
>  
> [Dateianhang nicht öffentlich]

Nein. Du hast die Koeffizienten $3$, $-4$ und $3$ von $x$, $y$ und $z$ vergessen.

> Ich weiß nun aus einem anderen Forum, dass k = 2 und j = 1
> ist, aber weshalb das so ist weiß ich leider noch immer
> nicht. Ich hoffe ihr könnt mir das sagen.

Nun, wenn $k = 2$ und $j = 1$ ist, ist der Koeffizient [mm] $\binom{6}{k} \binom{k}{j} [/mm] = [mm] \binom{6}{2} \binom{2}{1}$. [/mm]

Wenn du jetzt noch die Koeffizienten oben richtig eingefuegt haettest, muesstest du sie noch mit dazumultiplizieren mit den passenden Exponenten, und du waerst fertig.

Beispiel:

$(2 x + 3 [mm] y)^4$, [/mm] Koeffizient von $x [mm] y^3$. [/mm] Es ist $(2 x + 3 [mm] y)^4 [/mm] = [mm] \sum_{i=0}^4 \binom{4}{i} [/mm] (2 [mm] x)^i [/mm] (3 [mm] y)^{4 - i} [/mm] = [mm] \sum_{i=0}^4 \binom{4}{i} 2^i 3^{4 - i} \cdot x^i y^{4 - i}$. [/mm]

Du musst also $i = 1$ nehmen, und bekommst [mm] $\binom{4}{i} 2^i 3^{4 - i} [/mm] = [mm] \binom{4}{1} [/mm] 2 [mm] \cdot 3^3$. [/mm] Das kannst du jetzt ausrechnen.

LG Felix


Bezug
                
Bezug
Binomialkoeffizienten herausfi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Do 18.11.2010
Autor: dreamweaver

Vielen Dank für deine Antwort. Jetzt ist mir das ganze schon etwas klarer.
Eine Frage hab ich aber noch. Wie komm ich auf die beiden Werte k und j?

Ist k einfach die Potenz der Aufgabe (6) weniger der höchsten Potenz des gesuchten Koeffizienten (4) ?

Wie komme ich auf j?


Lg
dreamweaver

Bezug
                        
Bezug
Binomialkoeffizienten herausfi: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Do 18.11.2010
Autor: felixf

Moin!

> Vielen Dank für deine Antwort. Jetzt ist mir das ganze
> schon etwas klarer.
>  Eine Frage hab ich aber noch. Wie komm ich auf die beiden
> Werte k und j?
>  
> Ist k einfach die Potenz der Aufgabe (6) weniger der
> höchsten Potenz des gesuchten Koeffizienten (4) ?
>
> Wie komme ich auf j?

Vergleich doch mal deine Formel mit der gesuchten Potenz. Es muss [mm] $x^j y^{k - j} z^{6 - k} [/mm] = x y [mm] z^4$ [/mm] sein. Daraus kannst du doch ziemlich sofort $k$ und $j$ ablesen.

LG Felix


Bezug
                                
Bezug
Binomialkoeffizienten herausfi: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 18.11.2010
Autor: dreamweaver

Auweier... Bin wohl blind.

Vielen Dank für deine Hilfe!!

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]