www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Binomialkoeffizient
Binomialkoeffizient < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Mo 21.09.2009
Autor: ChopSuey

Hallo,

eine allgemeine Frage zum Binomialkoeffizienten.

Es ist $\ [mm] \vektor{n \\ k} [/mm] = [mm] \frac{n(n-1)*...*(n-k+2)(n-k+1)}{k!} [/mm] $

Auf meinem Übungsblatt taucht ebenfalls $\ [mm] \vektor{n \\ k-1} [/mm] $ auf.

Nun muss ich gestehen, dass ich nicht weiss, ob genannter Binomialkoeffizient

$\ [mm] \vektor{n \\ k-1} [/mm] = [mm] \frac{n(n-1)*...*(n-k+2)(n-\red{(k-1)}+1)}{(k-1)!} [/mm] = [mm] \frac{n(n-1)*...*(n-k+2)(n - k \red{ +2 })}{(k-1)!} [/mm] $

oder

$\ [mm] \vektor{n \\ k-1} [/mm] = [mm] \frac{n(n-1)*...*(n-k+2)(n-\red{k-1}+1)}{(k-1)!} [/mm] $

lautet. Intuitiv schliesse ich auf ersteres, doch ich kann hier eine Übung nicht abschliessen, weil ich nicht weiss, ob mein Fehler in obiger Frage liegt, oder wo anders.
Würde mich über Hinweise freuen.

Gruß
ChopSuey

        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Mo 21.09.2009
Autor: abakus


> Hallo,
>  
> eine allgemeine Frage zum Binomialkoeffizienten.
>  
> Es ist [mm]\ \vektor{n \\ k} = \frac{n(n-1)*...*(n-k+2)(n-k+1)}{k!}[/mm]

Hallo,
das ist eine gekürzte Version von [mm]\ \vektor{n \\ k} = \frac{n!}{k!*(n-k)!}[/mm]

>  
> Auf meinem Übungsblatt taucht ebenfalls [mm]\ \vektor{n \\ k-1}[/mm]
> auf.

Das ist demzufolge  [mm]\ \vektor{n \\ k-1} = \frac{n!}{(k-1)!*(n-(k-1))!}[/mm]= [mm] \frac{n!}{(k-1)!*(n-k+1))!}[/mm]
Gruß Abakus

>  
> Nun muss ich gestehen, dass ich nicht weiss, ob genannter
> Binomialkoeffizient
>  
> [mm]\ \vektor{n \\ k-1} = \frac{n(n-1)*...*(n-k+2)(n-\red{(k-1)}+1)}{(k-1)!} = \frac{n(n-1)*...*(n-k+2)(n - k \red{ +2 })}{(k-1)!}[/mm]
>  
> oder
>  
> [mm]\ \vektor{n \\ k-1} = \frac{n(n-1)*...*(n-k+2)(n-\red{k-1}+1)}{(k-1)!}[/mm]
>  
> lautet. Intuitiv schliesse ich auf ersteres, doch ich kann
> hier eine Übung nicht abschliessen, weil ich nicht weiss,
> ob mein Fehler in obiger Frage liegt, oder wo anders.
>  Würde mich über Hinweise freuen.
>  
> Gruß
>  ChopSuey


Bezug
                
Bezug
Binomialkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 Mo 21.09.2009
Autor: ChopSuey

Vielen Dank!

Grüße
ChopSuey

Bezug
        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Mo 21.09.2009
Autor: schachuzipus

Hallo ChopSuey,

t

>  
> [mm]\ \vektor{n \\ k-1} = \frac{n(n-1)*...*(n-k+2)(n-\red{(k-1)}+1)}{(k-1)!} = \frac{n(n-1)*...*(n-k+2)(n - k \red{ +2 })}{(k-1)!}[/mm]
>  
> oder
>  
> [mm]\ \vektor{n \\ k-1} = \frac{n(n-1)*...*(n-k+2)(n-\red{k-1}+1)}{(k-1)!}[/mm]
>  
> lautet. Intuitiv schliesse ich auf ersteres

Die erste Version ist natürlich die richtige, du hast aber den vorletzten Faktor im Zähler verbasselt.

Das muss lauten

[mm] $\vektor{n \\ k-1} [/mm] = [mm] \frac{n(n-1)*...*(n-\blue{(k-1)}+2)(n-\red{(k-1)}+1)}{(k-1)!} [/mm] = [mm] \frac{n(n-1)*...*(n-k+\blue{3})(n - k \red{ +2 })}{(k-1)!}$ [/mm]



Setze mal [mm] $k-1=\tilde{k}$ [/mm] und schreibe es dir mit der allerersten Formel für [mm] $\vektor{n \\ \tilde{k}}$ [/mm] nochmal ausführlich hin ...


LG

schachuzipus

Bezug
                
Bezug
Binomialkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Mo 21.09.2009
Autor: ChopSuey

Hallo schachuzipus,

ah! Das hab ich tatsächlich vergessen zu beachten. Vielen Dank für die Aufklärung, damit komm ich auch zum Ende meiner Übungsaufgabe.

Coole Sache:-)

Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]