www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Binomialkoeffizient
Binomialkoeffizient < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: induktion
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:44 Sa 12.03.2005
Autor: Franziska

Hallo ich habe auch Probleme mit dem Binomialkoeffizient habe auch schon das Forum durchsucht und leider nicht ganz die passenden Antworten gefunden. Deswegen nur ein paar kleine Fragen zur Ergänzung.

Ich soll mit vollständiger Induktion Beweisen, dass [m]\vektor{n \\ k} =\bruch{n!}{k!*(n-k)!}[/m] ist.

Dazu muss ich doch beweisen dass:
[mm] \vektor{n+1 \\ k}=... [/mm] ,
[mm] \vektor{n\\k+1}=..., [/mm]
[mm] \vektor{n+1\\k+1}=\vektor{n\\k}+\vektor{n\\k+1} [/mm] ist. oder?

Die ersten beiden habe ich hinbekommen bloß der letzte Punkt bereitet mir Schwierigkeiten. Wenn ich das Ergebnis vorraussetzte dann gehts dann muss ich ja nur passend umstellen und erweitern Hier im Matheforum gefunden wenn ich aber selbständig zu diesem Ergebnis kommen will hänge ich an folgender Stelle.

[mm] \vektor{n+1\\k+1}=\bruch{(n+1)!}{(k+1)!*(n-k+2)!} [/mm]

Mein nächster Schritt war dann(bei den anderen Induktionen war der immer gut):

[mm] \vektor{n+1\\k+1}=\vektor{n\\k}*\bruch{n+1}{(k+1)(n-k+2)(n-k+1)} [/mm]

Wie forme ich dies zu dem Ergebnis um? Oder muss ich das Ergebnis vorraussetzen damit ich dahin kommen?

Vielen Dank für die Mühe!!!

MFG Franzi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomialkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:39 Sa 12.03.2005
Autor: Brigitte

Hallo Franzi!

> Ich soll mit vollständiger Induktion Beweisen, dass
> [m]\vektor{n \\ k} =\bruch{n!}{k!*(n-k)!}[/m] ist.

[verwirrt] Was gibt es denn da zu beweisen? Das ist doch gerade die Definition des Binomialkoeffizienten!!! Bitte vergewissere Dich erst noch mal, dass Du das beweisen möchtest.
  
Viele Grüße
Brigitte


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]