www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Binomialkoeffizient
Binomialkoeffizient < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Do 23.10.2008
Autor: Shelli

Aufgabe
Zeige (n über k) Element N. Ist A eine n-elementige Menge, so ist (n über k) die Anzahl der k-elementigen Teilmengen.

Hallo!

Wie beweise ich, dass [mm] \vektor{n \\ k} [/mm] Element von N ist??

Kann ich außerdem die Aufgabe beweisen, in dem ich [mm] \summe_{i=1}^{n} \vektor{n \\ k} [/mm] = [mm] 2^n [/mm] setze, da [mm] 2^n [/mm] die Anzahl der Teilmengen ist? Kann ich das so machen und dann mit vollständiger Induktion beweisen?

Wäre echt dankbar über ein paar Tipps. Weiß leider überhaupt nicht wie ich an Beweise rangehen soll.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Fr 24.10.2008
Autor: koepper

Hallo,

Daß ${n [mm] \choose [/mm] k}$ die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge ist, zeigst du über vollständige Induktion:

Zeige zuerst, daß ${n [mm] \choose [/mm] 1} = n$ die Anzahl der 1-elementigen Teilmengen ist (trivial).
Konstruiere dann die Anzahl der k+1-elementigen Teilmengen aus der Anzahl der k-elementigen, indem du zu jeder k-elementigen Teilmenge ein weiteres Element hinzunimmst. Dabei ergeben sich aber alle k+1-elementigen TM mehrfach (wie oft?)

${n [mm] \choose [/mm] k} [mm] \in \IN$ [/mm] für $n, k [mm] \in \IN$ [/mm] folgt dann daraus.

LG
Will

Bezug
                
Bezug
Binomialkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Fr 24.10.2008
Autor: Shelli

Vielen Dank!
Habs jetzt doch hingekriegt, aber gut zu wissen, dass du denselben Lösungsweg hast... :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]