www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Binomialkoeffizient
Binomialkoeffizient < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Neu
Status: (Frage) beantwortet Status 
Datum: 17:18 Do 22.05.2008
Autor: Timmi

Aufgabe

Eine Firma beliefert 10 Kunden unabhängig voneinander.
Am Tag ist die Wahrscheinlichkeit einer Neubestellung bei jedem 0,3.
Wie viele Bestellung erhält die Firma höchstwahrscheinlich?


Hey!

Es geht hier wohl um die Binomialverteilung denke ich..
(Bestellung oder nicht)
p=0,3 und n=10 k=?

Bekomme es nicht in ein Urnenmodell gefasst. Mein Problem ist, dass jeder einzeln betrachtet wird. Wie wird aufgeteilt?

Danke!

Gruß Timmi

        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Do 22.05.2008
Autor: Al-Chwarizmi


>
> Eine Firma beliefert 10 Kunden unabhängig voneinander.
>  Am Tag ist die Wahrscheinlichkeit einer Neubestellung bei
> jedem 0,3.
>  Wie viele Bestellung erhält die Firma
> höchstwahrscheinlich?
>  
> Hey!
>  
> Es geht hier wohl um die Binomialverteilung denke ich..
>  (Bestellung oder nicht)
>  p=0,3 und n=10 k=?
>  
> Bekomme es nicht in ein Urnenmodell gefasst. Mein Problem
> ist, dass jeder einzeln betrachtet wird. Wie wird
> aufgeteilt?
>  
> Danke!
>  
> Gruß Timmi


hallo Timmi

ich denke, dass es hier um eine sehr einfache Frage zum Erwartungswert geht.
Wenn von 10 Kunden jeder an einem bestimmten Tag mit p = 0.3  eine
Bestellung liefert, dann ist der Erwartungswert für die Anzahl Bestellungen,
die an diesem Tag eingehen, gleich   [mm]n * p = 10 * 0.3 = 3. [/mm]
Etwas genauer analysiert kann man die Binomialverteilung heranziehen:
Die Wahrscheinlichkeit für genau  k  Bestellungen  (wobei  0 [mm] \le [/mm] k [mm] \le [/mm] 10)
ist

         [mm] P_k = \vektor{n \\ k} * p^k * (1-p)^{n-k} = \vektor{10 \\ k} * 0.3^k * 0.7^{10-k}[/mm]

Die Zahlenwerte [mm] P_0 [/mm] , [mm] P_1 [/mm] , [mm] P_2 [/mm] , ..... , [mm] P_{10} [/mm]  kann man tabellieren
Die grösste davon zeigt an, welche Anzahl von Bestellungen am häufigsten ist.
Hier ist das bestimmt  k = 3.

Gruß      al-Chwarizmi

Bezug
                
Bezug
Binomialkoeffizient: Aber
Status: (Frage) beantwortet Status 
Datum: 17:45 Do 22.05.2008
Autor: Timmi

Aufgabe
Siehe oben...


Danke erstmal!

In der Lösung steht, es soll höchsten 6 rauskaummen, mit einem Verweis in die Binomialtabellen, zum ablesen,

3 ist der Durchschnittserwartungswert.
Wie könnte man auf ca 6 kommen?

Timmi

Bezug
                        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Do 22.05.2008
Autor: Al-Chwarizmi

  
> Danke erstmal!
>  
> In der Lösung steht, es soll höchsten 6 rauskaummen, mit
> einem Verweis in die Binomialtabellen, zum ablesen,
>  
> 3 ist der Durchschnittserwartungswert.
>  Wie könnte man auf ca 6 kommen?
>  
> Timmi

In der Binomialtabelle solltest du unter  n=10, p=0.3 wohl genau die Zahlen vorfinden,
deren Berechnung ich angegeben habe. Ich empfehle dir, die Rechnungen selber durchzuführen!

"höchstens 6" ist absolut verträglich mit dem Ergebnis  k=3, denn 3 ist kleiner als 6 ...

LG   al-Ch.

(Sollte tatsächlich ein anderes Resultat als  k=3  zutreffen, dann würde ich einmal
behaupten, dass die Aufgabenstellung unklar oder missverständlich war !)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]