www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Binomialkoeffizient
Binomialkoeffizient < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Umformung
Status: (Frage) beantwortet Status 
Datum: 23:41 Mi 23.05.2007
Autor: DoktorQuagga

Aufgabe
Hallo,
ich habe in meinem Mathebuch die Formel für den Binomialkoeffizienten:
[mm] \bruch{n * (n - 1) * ... * (n - k + 1)}{k!} [/mm]

Da steht aber auch, dass man folgende Formel benutzen kann:
[mm] \bruch{n!}{(n - k)! * k!} [/mm]

1. Frage:
Wie komme ich von der ersten durch Umformungen auf die zweite Formel?
2. Frage:
Was soll denn bittschön (n - k)! bedeuten? Also wie habe ich mir den die Fakultät dieser Klammer vorzustellen; so im Sachzusammenhang und mathematisch (wie soll ich damit rechnen)?


        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 23:49 Mi 23.05.2007
Autor: schachuzipus

Hallo Doc,

wenn ich mich recht erinnere, hatte ich dir genau die Antwort zu (1) in deiner Frage neulich bzgl. der Formel für den BK gegeben.

Schau da noch mal nach. Das war eine Erweiterung mit [mm] \frac{(n-k)!}{(n-k)!} [/mm]

zu (2):

[mm] (n-k)!=(n-k)\cdot{}(n-k-1)\cdot{}(n-k-2)\cdot{}....\cdot{}3\cdot{}2\cdot{}1 [/mm]

vllt. wird das klarer, wenn du n-k=:m nennst, dann ist [mm] (n-k)!=m!=m(m-1)(m-2)\cdot{}.....\cdot{}3\cdot{}2\cdot{}1 [/mm]


Gruß

schachuzipus

Bezug
                
Bezug
Binomialkoeffizient: Lösung?
Status: (Frage) beantwortet Status 
Datum: 10:13 Do 24.05.2007
Autor: DoktorQuagga

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
$ =\frac{\left[n\cdot{}(n-1)\cdot{}(n-2)\cdots(n-k+1)\right](n-k)(n-k-1)(n-k-2)\cdots3\cdot{}2\cdot{}1}{k!\cdot{}(n-k)!}=\frac{n!}{k!(n-k)! $

Aber wie kommte ich jetzt eigentlich von dem erweiterten Bruch zum leichteren Bruch? Was kürzt sich denn da?
D.Q.

Bezug
                        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 Do 24.05.2007
Autor: schachuzipus

Hi Doc,

da kürzt sich gar nix.

Schau dir mal den Zähler ganz genau an.

Das Produkt im Zähler lief vorher von n bis n-k+1 runter.


Das ist erweitert mit (n-k)!, also einem Produkt, das von n-k runter bis 1 läuft.

Damit laüft das gesamte Produkt im Zähler von n runter bis 1, ist also n!


Gruß

schachuzipus

Bezug
                                
Bezug
Binomialkoeffizient: THX
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 So 27.05.2007
Autor: DoktorQuagga

Danke, ich hab's verstanden!^^
D.Q.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]