www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Binomialkoeffizent - Teilmenge
Binomialkoeffizent - Teilmenge < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizent - Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 So 26.11.2006
Autor: stepho

Aufgabe
Zeigen Sie mit vollständiger Induktion, dass eine n-Elementige Menge genau [mm] \vektor{n \\ k} [/mm] Teilmengen mit k Elementen enthält. n,k [mm] \in \IN_0 [/mm] k [mm] \le [/mm] n

Der Induktionsanfang erscheint ja relativ simpel. Für n=0 (leere Menge) ist lediglich die leere Menge Teilmenge, [mm] \vektor{0 \\ 0} [/mm] =1
Wie ich nun den Induktionsschritt beginnen könnte, ist mir nicht wirklich klar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Binomialkoeffizent - Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 So 26.11.2006
Autor: moudi

Hallo stepho

Sei $x$ ein Fix gewähltes Element der n-elementigen Menge X.
Dann kannst du die k-elementigen Teilmengen von X auf teilen in diejenigen Teilmengen, die x enthalten, dass sind aber gleich der Anzahle (k-1)-elementige Teilmengen von [mm] $X\smallsetminus\{x\}$ [/mm] und in diejenigen Teilmengen, die x nicht enthalten, das ist gleich der Anzahle k-elementigen Teilmengen von [mm] $X\smallsetminus\{x\}$. [/mm]

Bemerkung: Die Induktions"variable" ist die Summe m=n+k. Du darfst die Behauptung für m-1 annehmen.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]