www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Bin. Formel in Komm. Ring
Bin. Formel in Komm. Ring < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bin. Formel in Komm. Ring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Do 09.06.2011
Autor: Sup

Ich sollte gerade die binomische Formel per vollständige Induktion beweisen, was ich auch geschafft hab.
Die Vorraussetzungen waren: x,y [mm] \in \IQ [/mm] \ {0} und n [mm] \in \IN. [/mm]
[mm] (x+y)^n=\summe_{k=0}^{n}\vektor{n \\ k}x^{n-k}y^k [/mm]

Nun soll x,y Elemente eines assoziativen Rings sein.
Die Frage war, welche Eigenschaft der Ring sonst noch haben muss, damit die Formel gilt.

Für mich ist klar, dass der Ring kommutativ bzgl. der Multiplikation sein soll. Nur weiß ich nicht so recht wie ich das begründe.
Mein erster Gedanke war jetzt, dass der Binominalkoeffizient über die Fakultäten definiert ist, aber wenn ich die als [mm] \produkt_{i=1}^{n}i [/mm] schreibe ist ja die Reihenfolge eig. auch definiert.

Edit: Mir kam glaub ich grad der zündende Gedanke, hab wieder zu kompliziert gedacht.
Wäre der Ring nicht kommutativ wäre ja [mm] (r+s)^2=r^2+2rs+s^2\not=r^2+2sr+s^2=(s+r)^2 [/mm]
weil [mm] rs\not=sr [/mm]

        
Bezug
Bin. Formel in Komm. Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Do 09.06.2011
Autor: Schadowmaster

Na da bist du ja schon fast selbst fertig mit der Aufgabe.^^
Nur eine Kleinigkeit noch, bevor du das am Ende noch falsch ablieferst:

Wäre der Ring nicht kommutativ so wäre:
[mm] $(r+s)^2 [/mm] = [mm] r^2 [/mm] + rs + sr + [mm] s^2$ [/mm]
Das heißt du darfst da überhaupt nichts zu 2rs oder 2sr zusammenfassen, eben weil $rs [mm] \not= [/mm] sr$

Davon abgesehen hast du natürlich recht, wenn dein Ring kommutativ ist gilt die binomische Formel über ihm.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]