www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Bilinearformen
Bilinearformen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearformen: Matrixdarstellung
Status: (Frage) beantwortet Status 
Datum: 15:58 Mi 18.05.2005
Autor: Reaper

Hallo...hätte da ein paar Fragen bezüglich der inneren Produkte:
Def.: Seien V,W Vektorräume mit den Basen [mm] B=(b_{1},....,b_{m}) [/mm] und
[mm] C=(c_{1},....,c_{n}). [/mm] Für  sigma in Bil(v,W) heißt [mm] A_{sigma;B,C} [/mm] := [mm] (sigma(b_{i},c_{j})) [/mm] die Matrixdarstellung von sigma bzgl. B,C.

sigma ist also eine Funktion für die gilt VxW -> K
[mm] A_{sigma;B,C} [/mm] gibt an in welche Vektoren abgebildet wird wenn der Körper eine Matrix K mit m Zeilen und n Spalten ist oder? Von B und C wird zuerst das Kreuzprodukt gebidet und dann wird in den Körper abgebildet.

Wieso hat jede Bilinearform aus [mm] Bil(K^{m},K^{n}) [/mm] die Form:
[mm] sigma((x_{1},...,x_{m}),(y_{1},...,y_{n})) [/mm] = [mm] a_{11}*x_{1}*y_{1}+ [/mm]
[mm] a_{12}*x_{1}*y_{2}+....+a_{1n}*x_{1}*y_{n}+.....+ [/mm]
[mm] a_{mn}*x_{m}*y_{n} [/mm]
Woher kommen die a's her? Ich weiß dass das irgendwas mit der Abbildungsmatrix und den 2 Basen zu tun haben muss, denn bei linearen Abbildungen ist die Vorgehensweise ähnlich aber lineare Abbildungsmatrizen sind doch völlig anders als bilineare, denn bei linearen drücke ich eine Basis durch die andere aus, was bei den bilinearen nicht der Fall ist.

        
Bezug
Bilinearformen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Do 19.05.2005
Autor: Julius

Hallo Reaper!

> Hallo...hätte da ein paar Fragen bezüglich der inneren
> Produkte:
>  Def.: Seien V,W Vektorräume mit den Basen
> [mm]B=(b_{1},....,b_{m})[/mm] und
>  [mm]C=(c_{1},....,c_{n}).[/mm] Für  sigma in Bil(v,W) heißt
> [mm]A_{sigma;B,C}[/mm] := [mm](sigma(b_{i},c_{j}))[/mm] die Matrixdarstellung
> von sigma bzgl. B,C.
>  
> sigma ist also eine Funktion für die gilt VxW -> K
> [mm]A_{sigma;B,C}[/mm] gibt an in welche Vektoren abgebildet wird
> wenn der Körper eine Matrix K mit m Zeilen und n Spalten
> ist oder? Von B und C wird zuerst das Kreuzprodukt gebidet
> und dann wird in den Körper abgebildet.
>  
> Wieso hat jede Bilinearform aus [mm]Bil(K^{m},K^{n})[/mm] die Form:
>  [mm]sigma((x_{1},...,x_{m}),(y_{1},...,y_{n}))[/mm] =
> [mm]a_{11}*x_{1}*y_{1}+[/mm]
>  [mm]a_{12}*x_{1}*y_{2}+....+a_{1n}*x_{1}*y_{n}+.....+[/mm]
>  [mm]a_{mn}*x_{m}*y_{n}[/mm]
>  Woher kommen die a's her?

Aus der obigen Matrix $A$!

Wähle ich nämlich im [mm] $K^m$ [/mm] die Standardbasis [mm] $E_m=(e_1,\ldots,e_m)$ [/mm] und im [mm] $K^n$ [/mm] die Standardbasis [mm] $E_n=(e_1,\ldots,e_n)$, [/mm] so setzt man:

[mm] $A_{\sigma;E_m,E_n} [/mm] = [mm] \pmat{\sigma(e_1,e_1) & \ldots & \sigma(e_1,e_n) \\ \vdots & & \vdots \\ \sigma(e_m,e_1) & \ldots & \sigma(e_m,e_n)}$, [/mm]

und erhält wegen der Bilinearität von [mm] $\sigma$: [/mm]

[mm] $\sigma(x,y) [/mm] = [mm] \sum\limits_{i=1}^m \sum\limits_{j=1}^n x_iy_j \sigma(e_i,e_j) [/mm] = [mm] \pmat{x_1 & \ldots & x_m} \cdot A_{\sigma;E_m,E_n} \cdot \pmat{y_1 \\ \vdots \\ y_n}$. [/mm]

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]