www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Bilinearform
Bilinearform < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Fr 20.04.2012
Autor: yangwar1

Aufgabe
Sei V ein n-dimensionaler [mm] \IR [/mm] Vektorraum mit einer Bilinearform [mm] \Phi. [/mm]
a) Zeigen Sie, dass für jedes F [mm] \in End_{\IR}(V) [/mm] durch [mm] \Phi_F:V \times [/mm] V [mm] \to \IR, [/mm] (x,y) [mm] \mapsto \Phi(F(x),y) [/mm] ebenfalls eine Bilinearform auf V definiert ist.


Ich verstehe die Aufgabenstellung glaube ich nicht richtig. Gegeben ist also eine Bilinearform [mm] \Phi, [/mm] welche die Eigenschaften der Bilinearität erfüllt.
1. [mm] \Phi(v_1+v_2,w)=\Phi(v_1,w)+\Phi(v_2,w) [/mm] mit [mm] v_1,v_2,w \in [/mm] V.
2. ...
3. ...
4. ...

Um die Bilinearität der definierten Abbildung nachzuweisen, müsste ich doch dann (x+y,z) abbilden. Das wäre:
[mm] \Phi_F(x+y,z)=\Phi(F(x+y),z)=\Phi(F(x)+F(y),z)=\Phi(F(x),z)+\Phi(F(y),z)=\Phi_F(x,z)+\Phi(y,z) [/mm] mit x,y,z [mm] \in [/mm] V.
Das gleiche dann noch für die anderen drei "Regeln". Wäre ich dann fertig bzw. ist das richtig?

        
Bezug
Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Fr 20.04.2012
Autor: tobit09

Hallo yangwar,


> Ich verstehe die Aufgabenstellung glaube ich nicht richtig.

Ich glaube doch. ;-)

> Gegeben ist also eine Bilinearform [mm]\Phi,[/mm] welche die
> Eigenschaften der Bilinearität erfüllt.
>  1. [mm]\Phi(v_1+v_2,w)=\Phi(v_1,w)+\Phi(v_2,w)[/mm] mit [mm]v_1,v_2,w \in[/mm]
> V.
>  2. ...
>  3. ...
>  4. ...
>  
> Um die Bilinearität der definierten Abbildung
> nachzuweisen, müsste ich doch dann (x+y,z) abbilden. Das
> wäre:
>  
> [mm]\Phi_F(x+y,z)=\Phi(F(x+y),z)=\Phi(F(x)+F(y),z)=\Phi(F(x),z)+\Phi(F(y),z)=\Phi_F(x,z)+\Phi_\red{F}(y,z)[/mm]
> mit x,y,z [mm]\in[/mm] V.
>  Das gleiche dann noch für die anderen drei "Regeln".
> Wäre ich dann fertig bzw. ist das richtig?

[ok] Ja.


Viele Grüße
Tobias

Bezug
        
Bezug
Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 23.04.2012
Autor: Fincayra

Hallo

Der zweite Punkt ausgeschrieben wäre dann

$ [mm] \Phi_F [/mm] (kx, y) = [mm] \Phi [/mm] (F(kx), y) = [mm] \Phi [/mm] (k*F(x), y) = k * [mm] \Phi [/mm] (F(x), y) = k * [mm] \Phi_F [/mm] (x, y) [mm] \forall [/mm] x, y [mm] \in [/mm] V, k [mm] \in \IR [/mm] $

So richtig geschrieben?

LG
Fin

Bezug
                
Bezug
Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Mo 23.04.2012
Autor: schachuzipus

Hallo Fincayra,


> Hallo
>  
> Der zweite Punkt ausgeschrieben wäre dann
>  
> [mm]\Phi_F (kx, y) = \Phi (F(kx), y) = \Phi (k*F(x), y) = k * \Phi (F(x), y) = k * \Phi_F (x, y) \forall x, y \in V, k \in \IR[/mm] [ok]

[mm] $=...=\Phi_F(x,ky)$ [/mm]

>  
> So richtig geschrieben?

Ganz recht, du führst "einfach" alles auf [mm] $\Phi$ [/mm] zurück, von dem du ja weißt, dass es eine BLF ist und dass dafür dann alle Eigenschaften einer BLF gelten ...

>  
> LG
>  Fin


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]