www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Bilinearform
Bilinearform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform: aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:39 Di 14.06.2005
Autor: quentin

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

wünsch einen guten abend allen, die grad anwesend sind! bräuchte mal euern rat zu folgender aufgabe:

Die Bilinearform [mm] \beta [/mm] auf dem [mm] \IR^{3} [/mm] habe die folgende Matrix B bzgl. der Standardbasis:
B = [mm] \pmat{ 1 & -2 & 1 \\ -2 & 0 & 2 \\ 1 & 2 & 0 } [/mm]

(a) Bestimmen Sie eine Basis vom [mm] \IR^{3}, [/mm] bzgl. der die Matrix von [mm] \beta [/mm] Diagonalgestalt hat.
(b) Berechnen Sie Rang und Signatur von [mm] \beta. [/mm]
(c) Ist [mm] \beta [/mm] positiv definit?

Danke, an denjenigen der mir helfen kann. tschüssi

        
Bezug
Bilinearform: Zu a) und c)
Status: (Antwort) fertig Status 
Datum: 00:23 Mi 15.06.2005
Autor: DeusRa

Hallo,

du musst folgendes zu a) machen:
1. Schritt:
Eigenwerte berechnen und Eigenvektoren bestimmen.
2. Schritt:
Diese Eigenvektoren (in eigenen Eigenräumen) mit Gram-Schmidt-Verfahren orthonomieren.
D.h. bekommst du z.B. als Eigenwert [mm] (\lambda-1)²*(\lambda+2) [/mm] raus....ist halt nur ein Beispiel......dann müsstest du die beiden Eigenvektoren zu [mm] (\lambda-1)² [/mm] "miteinander" orthonomieren. [mm] (\lambda+2) [/mm] hingegen nur mit "sich selber" orthormieren.
(Diese orthonomierten Vektoren bilden die ON-Basis).
Diese Basen auf Orthogonalität überprüfen, also auf <b1, b2>=0 überprüfen. ALLE GEGENSEITIG ÜBERPRÜFEN !
3. Schritt:
Aus diesen Basen eine orthogonle Matrix :=U  bilden und folgendes ausrechnen:
U-1*B*U =(Da Matrix euklidisch und symmetrisch folgt:)  UT*B*U = D (Diagonalgestalt).

Zu c)
Eine positiv definite Matrix A hat ausschließlich positive Diagonalelemente und Eigenwerte. Insbesondere ist A invertierbar und die Inverse ist ebenfalls positiv definit.
Guckst du hier: []http://de.wikipedia.org/wiki/Definitheit

Bezug
        
Bezug
Bilinearform: zu b)
Status: (Antwort) fertig Status 
Datum: 14:28 Mi 15.06.2005
Autor: Julius

Hallo!

Im Allgemeinen ist $sign(B)=(p,q)$, wobei $p$ die Anzahl der positiven und $q$ die Anzahl der negativen Eigenwerte von $B$ ist.

Natürlich ist $Rang(B)$ dies maximale Anzahl linear unabhängiger Zeilen/Spalten von $B$. Es gilt offenbar:

$Rang(B)=p+q$.

Versuche das alles mal zu berechnen und melde dich wieder mit Ergebnissen.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]