www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Bilinearform
Bilinearform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Mi 07.06.2006
Autor: MasterEd

Aufgabe
Es sei T eine quadratische [mm] $n\times [/mm] n$-Matrix. Dann heißt die Summe der Diagonalelemente von T die "Spur" der Matrix T. Also
Spur(T)= [mm] \summe_{i=1}^{n} t_{ii} [/mm]
Seien nun $A,B$ zwei [mm] $n\times [/mm] n$-Matrizen über einem Körper $K$. Zeige dass durch
[mm] $\beta(A,B):=Spur(A*B)$ [/mm]
eine symmetrische Bilinearform definiert wird.

Kann mir bei dieser Aufgabe jemand helfen? (Ich habe sie nirgendwo sonst gestellt.)

Muss man nicht unter anderem zeigen, dass wegen der Symmetrie [mm] $\beta(A,B)=\beta(B,A)$ [/mm] ist, also dass $Spur(A*B)=Spur(B*A)$ ist? Das kommt aber doch so allgemein nicht hin, weil die Matrizenmultiplikation nicht kommutativ ist, also weil meistens [mm] $A*B\neq [/mm] B*A$ gilt.



        
Bezug
Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Mi 07.06.2006
Autor: madde_dong

Hallo MasterEd,

das ist richtig, Symmetrie bedeutet [mm] \beta(A,B)=\beta(B,A). [/mm] Und auch richtig, dass [mm] aB\neq [/mm] BA - in den meisten Fällen. Aber darum geht es ja auch nicht - es geht nur um Spur(AB)!!! Versuch es mal: schreibe [mm] A=(a_{ij}), B=(b_{ij}). [/mm] Und dann versuch doch mal die Diagonalelemente von AB und von BA aufzuschreiben.
Dann hast du Symmetrie gezeigt, aber noch nicht, dass es eine Bilinearform ist. Die Definition solltest du irgendwo in denen Aufzeichnungen finden können:
a) [mm] \beta(u+v,w)=\beta(u,w)+\beta(v,w) [/mm]
b) [mm] \beta(u,v+w)=\beta(u,v)+\beta(u,w) [/mm]
c) [mm] \beta(\lambda u,v)=\lambda\beta(u,v)=\beta(u,\lambda [/mm] v)
Das kannst du einfach nachrechnen, einfach nur einsetzen.

Ich hoffe, dass dir das weiter hilft. Falls du trotzdem noch Probleme haben solltest, frag ruhig nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]