www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Bildungsvorschrift
Bildungsvorschrift < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bildungsvorschrift: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:03 Sa 17.04.2010
Autor: MetalFriedi

Aufgabe
Ermitteln Sie die bildungsvorschrift zu folgender Zahlenfolge:

0, 1, 1.5, 1.75, 1.875

Ich komme einfach nicht auf die Lösung. We kann mir bitte helfen?


eigentlich dachte ich erst  [mm] a_n_-_1 [/mm] + [mm] \bruch{1}{n} [/mm]

aber das stimmt ja bei 5 nicht mehr.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bildungsvorschrift: Antwort
Status: (Antwort) fertig Status 
Datum: 03:30 Sa 17.04.2010
Autor: ChopSuey

Moin,

schreibe die Folge mal in Brüchen:

$\ [mm] \frac{0}{q}, [/mm] \ [mm] \frac{q'}{q'}, [/mm] \ [mm] \frac{3}{2}, [/mm] \ [mm] \frac{7}{4}, [/mm] \ [mm] \frac{15}{8} [/mm] $ wobei $\ q, q' [mm] \in \IQ [/mm] $ und $\ q [mm] \not=0 [/mm] $

vom 5. Glied deduktiv ausgehend, stellt man fest, dass die Nenner sich jeweils halbieren und die Differenz zwischen den Brüchen entspricht immer dem Nenner des Folgeglieds.

So findet man $\ q' = 1 $ und $\ q = [mm] \frac{1}{2} [/mm] $

Die Folge lautet in Bruchdarstellung also

$\ [mm] \frac{0}{\frac{1}{2}}, [/mm] \ [mm] \frac{1}{1}, [/mm] \ [mm] \frac{3}{2}, [/mm] \ [mm] \frac{7}{4}, [/mm] \ [mm] \frac{15}{8} [/mm] $

Es fällt ausserdem auf, dass jeder Nenner als Zweierpotenz darstellbar ist:


$\ [mm] \frac{0}{2^{-1}}, [/mm] \ [mm] \frac{1}{2^0}, [/mm] \ [mm] \frac{3}{2^1}, [/mm] \ [mm] \frac{7}{2^2}, [/mm] \ [mm] \frac{15}{2^3} [/mm] $

Für den Nenner gilt also $\ [mm] (b_n) [/mm] = [mm] 2^{n} [/mm] $ mit $\ n [mm] \in \{-1,0,1,2,3 \}$ [/mm]

Da sich die Zähler immer um den Nenner des Folgeglieds unterscheiden, ergibt sich für die Bildungsvorschrift:

$\ [mm] (a_n) [/mm] = [mm] \frac{2*2^{n}-1}{2^n} [/mm] =  [mm] \frac{2^{n+1}-1}{2^n} [/mm] $ mit $\ n [mm] \in \{-1,0,1,2,3 \}$ [/mm]

Viele Grüße
ChopSuey

Bezug
                
Bezug
Bildungsvorschrift: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:12 Sa 17.04.2010
Autor: MetalFriedi

Oh super. jetzt fällts mir auch auf! Vielen Dank, besonders für die Tipps zur Lösungsfindung!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]