www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Bildsequenz bzw Kernsequenz
Bildsequenz bzw Kernsequenz < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bildsequenz bzw Kernsequenz: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 10:41 Mo 27.04.2009
Autor: Achtzig

Aufgabe
Zeigen Sie, dass die Bildsequenz abbricht, wenn V endlichdimensional ist, und, dass der
Abbruchindex der gleiche ist wie bei der Kernsequenz.

Also der Begriff der Kernsequenz war ja ein oder zwei Beiträge vorher schon diskutiert. also die bildsequenz ist das analoge dazu.

Zur Antwort auf die Aufgabe habe ich mir überlegt, das mit der Dimensionsformel zu beweisen, jedoch weiß ich noch nicht genau wie deshalb wärs gut wenn ihr mir da weiter helfen könntet.
da wir ja wissen, dass die Kernseuqenz ab einem bestimmten Fitting-Index stationör wird und die dim ker + dim Im = dim V sein muss, und die Sequenzen ja innerinander verschachtelt sind, muss das der gleiche Index sein. aber reicht das als Begründung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke schonmal

        
Bezug
Bildsequenz bzw Kernsequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Mo 27.04.2009
Autor: angela.h.b.


> Zeigen Sie, dass die Bildsequenz abbricht, wenn V
> endlichdimensional ist, und, dass der
>  Abbruchindex der gleiche ist wie bei der Kernsequenz.
>  Also der Begriff der Kernsequenz war ja ein oder zwei
> Beiträge vorher schon diskutiert. also die bildsequenz ist
> das analoge dazu.

Hallo,

prinzipell wäre es kein Fehler, hier nochmal aufzuschreiben, was mit "die Bildsequenz" gemeint ist...

>  
> Zur Antwort auf die Aufgabe habe ich mir überlegt, das mit
> der Dimensionsformel zu beweisen, jedoch weiß ich noch
> nicht genau wie deshalb wärs gut wenn ihr mir da weiter
> helfen könntet.
>  da wir ja wissen, dass die Kernseuqenz ab einem bestimmten
> Fitting-Index stationör wird und die dim ker + dim Im = dim
> V sein muss, und die Sequenzen ja innerinander
> verschachtelt sind, muss das der gleiche Index sein. aber
> reicht das als Begründung?

Was meinst Du mit "verschachtelt"?

Daß die Bildsequenz stationär wird, hast Du also schon gezeigt, und Du willst jetzt begründen, daß es derselbe Index ist wie bei der Kernsequenz, richtig?

Mit der Dimensionsformel hast Du schonmal das richtige Werkzeug in der Hand genommen - aber  so recht überzeugt bin ich noch nicht.

Mal angenommen, die Kernsequenz würde ab k stationär, und ich käme daher und würde sagen: die Bildsequenz wird aber  (schon/erst) bei l stationär.

Was würdest Du tun, um mich zu überzeugen?

Gruß v. Angela

Bezug
                
Bezug
Bildsequenz bzw Kernsequenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Mo 27.04.2009
Autor: Achtzig

gute frage... hat das vielleicht was damit zu tun, dass die sequenzen unterräume voneinander sind? hat das vlt damit wa szu tun? das meinte ich eigentlich mit verschachtelt) aber so recht weiß ich nicht weiter

Bezug
                        
Bezug
Bildsequenz bzw Kernsequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Mo 27.04.2009
Autor: angela.h.b.


> gute frage... hat das vielleicht was damit zu tun, dass die
> sequenzen unterräume voneinander sind? hat das vlt damit wa
> szu tun?

Hallo,

ganz gewiß hat das etwas damit zu tun.

Ich weiß nun wirklich schlecht, wie ich Dir weiterhelfen soll, weil man ja nichts sieht von dem, was Du machst.

Versuch doch mal einen Beweis durch Widerspruch:

Voraussetzung: endlichdim VR V, lineare Abbildung f, Kernsequenz stationär ab k.
bereits zuvor gezeigt:  Bildsequenz stationär  ab einem m.

Annahme:
1. Fall: m<k: ...
2. Fall m>k: ...

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]