www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Bild einer offenen Menge
Bild einer offenen Menge < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild einer offenen Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Mo 26.03.2007
Autor: JuliaF

Aufgabe
Seien V und W zwei VR und sei T: V --> W eine lineare Abbildung, mit Bild(T) =W. Sei nun A eine algebraisch offene Menge in V. Zeige, dass das Bild T(A) algebraisch offen in W ist.

Hallo!!

Also ich denke, dass es sich hier um einen wahrscheinlich "trivialen" Beweis handelt, aber ich habe dennoch so meine Probleme mit dem Aufschreiben, und vielleicht ist es auch nicht so ganz richtig.
Algebraisch offen haben wir so definiert, dass derSchnitt von A mit jeder Gerade L in V ein offenes Intervall ist. Also wenn L = [mm] \{v + \beta u : \beta \in IR \}[/mm] in V, u,v aus V dann [mm] A \cap L = \{ v + \beta u : \gamma < \beta < \delta \}[/mm]
Wobei [mm] - \infty < \gamma < \delta < + \infty [/mm]

Nun hatte ich mir überlegt, dass ich einfach den schnitt von A mit jeder Gerade L mit f abbilde, und dann etwas erhalte, das so aussieht
[mm] f (A \cap L ) = \{w \in W : es existiert ein x \in (A \cap L) mit f(v + \beta u) = f (v) + \beta f(u)=w \} [/mm]  und damit wäre ihc dann fertig.

Ist das so richtig und kann ich das so schreiben?
Wäre sehr dankbar für Tipps!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bild einer offenen Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Mo 26.03.2007
Autor: wauwau

Du muss zeigen, dass jede Gerade in W mit T(A) ein offenes Intervall als Schnittmenge hat.
d.h

[mm] \forall [/mm] a,b [mm] \in [/mm] W   [mm] \{x\in W|x=a+\gamma*b\} \cap [/mm] T(A) = [mm] \{x \in W | x = a+\delta*b x_{1} < \delta < x_{2}\} [/mm]

Da T jedoch linear ist, und W = T(V) werden Gerade in Gerade abgebildet. So gibt es für jede Gerade h in W mindestens eine Gerade g mit T(g)=h

und dann kannst du deine Argumentations verwenden.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]