www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Bild einer Quadrik
Bild einer Quadrik < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild einer Quadrik: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:29 Di 30.06.2009
Autor: klaeuschen

Aufgabe
Bestimmen Sie das Bild der Quadrik Q [mm] \subseteq \IR^{3} [/mm] gegeben durch [mm] x^{2}-y^{2}+2xz-y+3z-2=0 [/mm] unter der Affinität f(x,y,z)=(3-x+2z,2+y+z,1-x+z).

Hallo liebe Mathefreunde!
Ich habe die Aufgabe komplett bearbeitet und möchte eigentlich nur wissen, ob alles richtig ist.

Als erstes bestimme ich die Matrix B der Quadrik Q:

[mm] A=\pmat{ 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 } [/mm]

[mm] c=\pmat{ 0 \\ -1 \\ 3 } [/mm]

[mm] a=\bruch{1}{2}c=\pmat{0 \\ -\bruch{1}{2} \\ \bruch{3}{2}} [/mm]

[mm] B=\pmat{ d & a^{T} \\ a & A}=\pmat{-2 & 0 & -1/2 & 3/2 \\ 0 & 1 & 0 & 1 \\ -1/2 & 0 & -1 & 0 \\ 3/2 & 1 & 0 & 0} [/mm]


Anschließend bestimme ich die Matrix C der Affinität:

[mm] b=f(0,0,0)=\pmat{3\\2\\1} [/mm]

[mm] A=\pmat{-1 & 0 & 2\\ 0 & 1& 1 \\ -1&0&1} [/mm]

[mm] C=\pmat{1 & 0 \\ b & A}=\pmat{1&0&0&0\\3&-1&0&2\\2&0&1&1\\1&-1&0&1} [/mm]

Nun kann ich die Matrix B' von f(Q) errechnen:

[mm] B'=(C^{-1})^{T}*B*C^{-1}=\pmat{1&-1&0&-2\\0&1&-1&1\\0&0&1&0\\0&-2&1&-1}*\pmat{-2&0&-1/2&3/2 \\ 0 & 1 & 0 & 1 \\ -1/2 & 0 & -1 & 0 \\ 3/2 & 1 & 0 & 0}*\pmat{1&0&0&0 \\ -1&1&0&-2 \\0&-1&1&1 \\ -2&1&0&-1}=\pmat{-3 & -2 & -1/2 & 5 \\ -2 & 2 &1 -4 \\ -1/2 & 1 & -1 & -1 \\ 5 & -4 & -1 & 7} [/mm]

Also ist das Bild f(Q) der Matrix Q:

f(Q): [mm] 2x^{2}-y^{2}+7z^{2}+2xy-8xz-2yz-4x-y+10z-3=0 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bild einer Quadrik: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 Do 02.07.2009
Autor: klaeuschen

Kann mir keiner die Frage beantworten? Hatte ich vielleicht einen Denkfehler bei der Lösung, oder ist alles richtig?

Bezug
        
Bezug
Bild einer Quadrik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Sa 04.07.2009
Autor: Nachbar

salü,

habe alles nach deinem Schema nachgerechnet und komme auf dasselbe Ergebniss....


jetzt wirst du wohl weiter mit Standardformen rechnen !!!

Grüße !!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]