www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Bild & Urbild linearer Abb.
Bild & Urbild linearer Abb. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild & Urbild linearer Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Mi 21.03.2007
Autor: Zerwas

Aufgabe
Es seien V = [mm] \IR^3 [/mm] und W = [mm] \IR^4 [/mm] gegeben. Bezüglich der Standardbasen definieren wir eine lineare Abbildung [mm] \phi: V\rightarrow [/mm] W durch A = [mm] \pmat{ -1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 1 }. [/mm]

(a) Für welche Werte [mm] a\in \IR [/mm] liegt der Vektor [mm] w_a [/mm] := [mm] \pmat{ a \\ 1 \\ -1 \\ 1} [/mm] in [mm] \phi(V)? [/mm]
(b) Geben Sie für diese [mm] a\in \IR [/mm] die Urbilder von [mm] w_a [/mm] in V an .
(c) Was ist der Rang von [mm] \phi? [/mm]

Eigentlich geht es nur darum ob ich die Aufgabe richtig verstanden und den richtigen Weg zur Lösung angewandt habe.

(a) ein Gleichungssystem bilden: [mm] \pmat{ -1 & 1 & 0 & a \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 2 & 0 & 1 & 1 } [/mm] und mit gauss auflösen daraus folgt: [mm] \pmat{ 0 & 0 & 0 & a+1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & -1 } [/mm]
also ist das Gleichungssystem lösbar, wenn a=-1 und damit gehört [mm] w_a [/mm] für diesen Wert zum Bild von [mm] \phi [/mm]

(b) Die Urbilder ergeben sich aus der Lösung des Gleichungssystems:
     [mm] v_3=1, v_2=-1, v_3=0 [/mm] => [mm] v=\pmat{ 0 \\ -1 \\ 1 } [/mm] ist also Urbinl von [mm] w_a [/mm] in V

(c) Der Rang von [mm] \phi [/mm] ergibt sich aus dem Glaichungssystem in (a) => [mm] rg(\phi) [/mm] = 3


Wie gesagt geht es nicht um Rechenfehler sondern darum ob mein Lösungsweg richtig ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bild & Urbild linearer Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Mi 21.03.2007
Autor: schachuzipus


> (a) ein Gleichungssystem bilden: [mm]\pmat{ -1 & 1 & 0 & a \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 2 & 0 & 1 & 1 }[/mm]

[ok]


> und mit gauss auflösen daraus folgt: [mm]\pmat{ 0 & 0 & 0 & a+1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & -1 }[/mm]
>  
> also ist das Gleichungssystem lösbar, wenn a=-1 und damit
> gehört [mm]w_a[/mm] für diesen Wert zum Bild von [mm]\phi[/mm]

[ok]


  

> (b) Die Urbilder ergeben sich aus der Lösung des
> Gleichungssystems:
>       [mm]v_3=1, v_2=-1, v_3=0[/mm] => [mm]v=\pmat{ 0 \\ -1 \\ 1 }[/mm] ist

> also Urbinl von [mm]w_a[/mm] in V

[ok] Vielleicht solltest du hier mit 2 Wortem kurz erläutern, wie du auf die Lösung kommst, bzw wo genau du sie abliest ;-)

  

> (c) Der Rang von [mm]\phi[/mm] ergibt sich aus dem Glaichungssystem
> in (a) => [mm]rg(\phi)[/mm] = 3

hmm, jein, der Rang von [mm] \phi [/mm] ist gleich rg(A), der ist aber auch 3  




Hallo Zerwas,

m.E. ist  alles richtig [daumenhoch]

Gruß

schachuzipus

Bezug
                
Bezug
Bild & Urbild linearer Abb.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Mi 21.03.2007
Autor: Zerwas

Danke ... Kommentare verstanden und beherzigt ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]