www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Bijektivität, Umkehrfunktion
Bijektivität, Umkehrfunktion < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektivität, Umkehrfunktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:59 Do 22.01.2009
Autor: Giorda_N

Aufgabe
f: A [mm] \to [/mm] B, wobei a [mm] \in [/mm] A und b [mm] \in [/mm] B

Hallo zusammen,

ich bin mir gerade den Kopf am zerbrechen:

Auf meinem Blatt steht:

f(a) = [mm] f^{-1}(a) [/mm]

Und ich kann dem einfach nicht folgen. Kann mir jemand helfen?

f(a) = b
und [mm] f^{-1}(b) [/mm] = a

aber wie kommt man auf f(a) = [mm] f^{-1}(a)?? [/mm]


P.s habe die Frage auf keinem anderen Forum gepostet.

        
Bezug
Bijektivität, Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Do 22.01.2009
Autor: reverend

Hallo [mm] Giorda_N, [/mm]

da kommt man nicht drauf, das ist offenbar gegeben und eine besondere Eigenschaft Deiner Abbildung.

Jetzt wo ich gerade am Antworten tun am dran sein bin, kann ich ja ohne das Blatt zum Lesen zu haben, auch einen Dreckfuhler nich ausschließen.

Glücklicherweise ist das ja kein Deutsch-Forum hier...

lg,
reverend

Bezug
                
Bezug
Bijektivität, Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Do 22.01.2009
Autor: Giorda_N

Nein es ist keine Eigenschaft, denn das ist meine Lösung....und die wurde so als richtig korrigiert und ich begreife einfach nicht mehr wie ich auf das gekommen bin.....

Bezug
                        
Bezug
Bijektivität, Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 Do 22.01.2009
Autor: reverend

Auch nicht schlecht... :-)

Das gilt ja nicht im allgemeinen, sondern genau dann, wenn f(a)=a.

Um das nachzuvollziehen, müsstest Du dann doch mal die Funktion verraten.

Bezug
                        
Bezug
Bijektivität, Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Do 22.01.2009
Autor: leduart

Hallo
wie du da drauf gekommen bist, kann man nicht wissen, wenn man die Aufgabe, die du geloest hast nicht kennt!
Gruss leduart

Bezug
                                
Bezug
Bijektivität, Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 Do 22.01.2009
Autor: Giorda_N

Aufgabe
Diese Aufgabe



Hallo Ihr Zwei,

Ich bin jetzt in den Semsterferien und mache alle meine Aufgaben nochmals durch. Genau zu dieser Aufgabe habe ich schon mal was gepostet (siehe Link in der Aufgabenstellung)

Die eine Richtung des Beweises hat mir ArthurDayne gegeben. Anschliessend habe ich die andere Richtung gemacht und bei der Korrektur dieser Übung habe ich nur Häcken gekriegt und volle Punktzahl, weshalb ich davon ausgehe das es richtig sein muss.

Also ich schreibe Euch mal diesen Weg auf und markiere mit rot, wo mein Problem liegt:

Zu zeigen:
(b bijektiv ^c bijektiv)  [mm] \Rightarrow [/mm] (d injektiv) [mm] \Rightarrow [/mm] (a injektiv)

Beweis:

Sei [mm] a_{1}, a_{2} \in [/mm] A mit [mm] a_{1} \not= a_{2} [/mm]
Zu zeigen: [mm] a(a_{1}) \not= a(a_{2}) [/mm]

Es ist c bijektiv folgt:
[mm] \exists b_{1}, b_{2} \in [/mm] B mit [mm] b_{1} \not= b_{2} [/mm]
[mm] c^{-1}: [/mm] D [mm] \to [/mm] B, [mm] d_{i} \mapsto c^{-1}(b_{i}). [/mm] Daraus folgt
[mm] c^{-1}(b_{1} [/mm] = [mm] b_{1} \not= b_{2} [/mm] = [mm] c^{-1}(b_{2}). [/mm]
Somit [mm] c(b_{1}) [/mm] = [mm] c^{-1}(b_{1}) [/mm]

Es ist d injektiv:
[mm] c_{1},c_{2} \in [/mm] C mit [mm] c_{1} \not= c_{2} [/mm]
Also: [mm] d(c_{1}) [/mm] = [mm] d_{1} \not= d_{2} [/mm] = [mm] d(c_{2}) [/mm]

Es ist b bijektiv:
[mm] b(a_{1}) [/mm] = [mm] c_{1} \not= c_{2} [/mm] = [mm] b(a_{2}) [/mm] und
[mm] b^{-1}: [/mm] C [mm] \to [/mm] A, [mm] c_{i} \mapsto b^{-1}(a_{i}) [/mm]
Daraus folgt [mm] b^{-1}(a_{1}) [/mm] = [mm] a_{1} \not= a_{2} [/mm] = [mm] b^{-1}(a_{2}) [/mm]

Mit der Voraussetzung c [mm] \circ [/mm] a = d [mm] \circ [/mm] b folgt:

[mm] a(a_{1}) [/mm] = [mm] b_{1} [/mm] = [mm] c^{-1}(b_{1}) [/mm] = [mm] c(b_{1}) [/mm] = d [mm] \circ b(b_{1}) [/mm] = [mm] b(d(c_{1}) [/mm] = [mm] d_{1} \not= d_{2} [/mm] = d [mm] \circ b(b_{2}) [/mm] = [mm] c(b_{2}) [/mm] = [mm] c^{-1}(b_{2}) [/mm] = [mm] a(a_{2}) [/mm]

Also ist gezeigt: [mm] a(a_{1}) \not= a(a_{2}) [/mm]
Deshalb ist a injektiv.

Ich hoffe ihr könnt mir es erklären.
Lieben Dank.



Bezug
                                        
Bezug
Bijektivität, Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Do 22.01.2009
Autor: reverend

Hallo Giorda_N,

dieser Beweis ist falsch.
Die beiden Teile zu Bijektivität enthalten grundlegende Fehler, die nicht als Tippfehler zu deuten sind.

Das wird u.a. in der zusammenfassenden Gleichungskette deutlich. Zu zeigen war Ungleichheit!

Dass Du volle Punktzahl und Häkchen bekommen hast, ist ein Indiz für die Überarbeitung der Korrigierenden, aber keineswegs ein Beleg für die Richtigkeit der Beweisführung.

Du hast daher völlig Recht, an der rot markierten Zeile zu zweifeln. Sie ist nicht zu belegen.

Mal ganz platt: A und C haben die gleiche Mächtigkeit und eine eindeutige, bijektive Zuordnung ihrer Elemente. Gleiches gilt für B und D. Nun ist zu zeigen, dass B mächtiger ist als A genau dann, wenn D mächtiger ist als B. Dies geschieht über weitere Zuordnungen zwischen A und B bzw. C und D, die injektiv sind.

Du könntest auf (fast) gleichem Wege den gleichen Sachverhalt bezüglich der Surjektivität zwischen zwei "parallelen" Zuordnungen zeigen, wobei sich das Bildwort "parallel" hier auf die Grafik von Arthur Dayne (hier) bezieht.

Sorry.

lg,
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]