www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Bijektive Abbildung entwickeln
Bijektive Abbildung entwickeln < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektive Abbildung entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 So 17.09.2006
Autor: Binky

Aufgabe
Geben Sie eine bijektive Abbildung f: [mm] \IN [/mm] -> [mm] \IZ [/mm] an.
f(n)= ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo. Mir ist klar, was eine bijektive Abbildung ist und habe auch ein Ergebnis durch rumprobieren erhalten.
Kann man sich diese Ausprobiererei auch durch ein bestimmtes Verfahren erleichtern?

Ich habe z.B. [mm] f(n)=\begin{cases} -n/2, & \mbox{für } n \mbox{ gerade} \\ (n-1)/2, & \mbox{für } n \mbox{ ungerade} \end{cases} [/mm]

Schon mal vielen Dank für die Mühen.
Gruß
Alex

        
Bezug
Bijektive Abbildung entwickeln: Antwort
Status: (Antwort) fertig Status 
Datum: 07:36 Mo 18.09.2006
Autor: Palin

Hi wenn ich mich nicht ganz vertuhe, gibt es keine Bijektive Abb. von N->Z

da für jedes y aus Z genau ein x aus N geben muss.
Da aber die Menge Z "mehr" Elemente hat als N muss es mindestens ein y1 und y2 geben die auf das selbe x Abgebildet werden.
Also nicht bijektiv.

Bezug
                
Bezug
Bijektive Abbildung entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Mo 18.09.2006
Autor: Binky

Es ist bijektiv. Soweit ist es klar für mich.

[mm] \IN [/mm]  8  6  4  2 1 3 5 7 9
[mm] \IZ [/mm] -4 -3 -2 -1 0 1 2 3 4

So findet man es in den Lehrbüchern. [mm] \IN \to \IR [/mm] ist z.B. nicht bijektiv.
Meine Frage bezieht sich allerdings darauf, wie ich solch eine Abbildung entwickeln kann.
Bisher probiere ich rum. Stelle mir solch eine Abbildung s.o. als Tabelle dar und finde irgendwann eine Lösung.
Gibt es also dafür auch ein Verfahren?

Gruß

Binky

Bezug
                        
Bezug
Bijektive Abbildung entwickeln: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Mo 18.09.2006
Autor: mathiash

Hallo zusammen,

im einfachen Sinne ein Verfahren gibt es leider nicht, man muss jeweils sich die zur Diskussion stehenden Mengen anschauen und aus
ihrer Struktur heraus solch eine Abbildung konstruieren.

Jedoch gibt es natürlich Hilfsmittel. So gibt es einen Satz, der besagt, dass, wenn es zu zwei Mengen A und B Injektionen [mm] f\colon A\to [/mm] B und [mm] g\colon B\to [/mm] A gibt. dann auch eine Bijektion von A nach B existiert, und derr Beweis ist in gewissem Sinne konstruktiv.

Eine Injektion von [mm] \IN [/mm] nach [mm] \IZ [/mm] ist einfach, und dann würde es halt reichen, nur noch eine Injektion von [mm] \IZ [/mm] nach [mm] \IN [/mm] zu konstruieren, anstatt sich über eine
''ganze Bijektion'' Gedanken machen zu müssen.

Gruss,

Mathias


Bezug
                                
Bezug
Bijektive Abbildung entwickeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Mo 18.09.2006
Autor: Binky

Tja, dann belassen wir es an dieser Stelle mal dabei.
Ich versuche dann weiterhin die Zusammenhänge direkt zu erkennen.

Danke und Gruß
Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]