www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Beziehung der Funktion zeigen
Beziehung der Funktion zeigen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beziehung der Funktion zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Mi 28.10.2015
Autor: Joseph95

Aufgabe
f(n) [mm] \in [/mm] O(g(n)) ⇔ [mm] (\exists [/mm] c>0 [mm] \exists n_{0} \in\IN\forall [/mm] n [mm] \ge n_{0})[f(n) \le [/mm] c·g(n)]
f(n) [mm] \in [/mm] Ω(g(n)) ⇔ [mm] (\exists [/mm] c>0 [mm] \exists n_{0} \in\IN\forall [/mm] n [mm] \ge n_{0})[f(n) \ge [/mm] c·g(n)]
f(n) [mm] \in [/mm] Θ(g(n)) ⇔ f(n) [mm] \in [/mm] O(g(n)) und f(n) [mm] \in [/mm] Ω(g(n))

Zeigen Sie, dass für die Funktion f(n) := [mm] \summe_{i=1}^{n} \bruch{1}{i} [/mm] die Beziehung f(n) [mm] \in [/mm] θ(log(n)) gilt. Beweisen Sie dazu zunächst die Beziehung f(n) - 1 [mm] \le \integral_{1}^{n+1}{\bruch{1}{x}dx} \le [/mm] f(n), indem Sie das Integral der Funktion 1/x betrachten (=Fläche unterhalb des Funktionsgraphen. Werten Sie anschliessend das Integral aus und folgern Sie das Gewünschte.

Hey Leute,

ich studiere seit einigen Wochen nun Mathematik und ich muss sagen, ohne euch wäre das schon längst schief gelaufen, deshalb vorab nochmals vielen Dank bisher. Leider verzweifle ich noch an einer Aufgabe, und erbitte deshalb eure Hilfe.

Nachdem ich mir nun die Aufgabe genau durchgelesen habe, würde ich wie folgt beginnen: Ich zeige zunächst,
1) f(n) - 1 [mm] \le \integral_{1}^{n+1}{\bruch{1}{x}dx} [/mm]
2) [mm] \integral_{1}^{n+1}{\bruch{1}{x}dx} \le [/mm] f(n)

1) [mm] \summe_{i=1}^{n} \bruch{1}{i} [/mm] - 1 [mm] \le \integral_{1}^{n+1}{\bruch{1}{x}dx} [/mm]
=> [mm] \summe_{i=1}^{n} \bruch{1}{i} [/mm] - 1 [mm] \le [/mm] ln(n+1) - ln(1)
=> [mm] \summe_{i=1}^{n} \bruch{1}{i} [/mm] - 1 [mm] \le [/mm] ln(n+1)

Ab hier komme ich nicht mehr weiter. Habt ihr vielleicht Ideen wie ich vorgehen kann?

Vielen Dank,
Joseph95

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beziehung der Funktion zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mi 28.10.2015
Autor: hippias

Da wird wohl kein ganz strenger Beweis erwartet, da ihr Rieman-Integrale sicher noch nicht behandelt habt.

Daher erinnere Dich wie ihr Integrale in der Schule eingefuehrt habt. Zuerst skizziere den Graphen der Funktion [mm] $f(x)=\frac{1}{x}$ [/mm] im Interval $[1,n+1]$. Sodann zerlege das Interval in $n+1$ Teilintervalle der Länge $1$. Man kann den Inhalt der von der $x$-Achse und dem Graphen von $f$ eingeschlossenen Fläche durch eine Summe von Rechteckflaechen approximieren.
Diese Approximation kann auf zwei Arten durchgefuehrt werden:
1. Du zeichnest die Rechtecke jeweils vom linken Startpunkt der Teilintervalle bis vom Graphen von $f$ hoch; diese Rechtecke ragen alle ein wenige ueber $f$ hinaus.
2. Du zeichnest die Rechtecke jeweils vom rechten Endpunkt der Teilintervalle bis vom Graphen von $f$ hoch; diese Rechtecke liegen alle unterhalb von $f$.

Fuer die Rechteckflaechen gilt [mm] Länge$\times$ [/mm] Breite, also für das $i$-te Rechteck der 1. Sorte [mm] $f(i)\cdot [/mm] 1= [mm] \frac{1}{i}$. [/mm] Dies Summe all dieser ist damit [mm] $\sum_{i=1}^{n} \frac{1}{i}$. [/mm]

Nun fuehre dies auch für die Rechtecke der zweiten Sorte durch und vergleiche mit dem Integral.

Bezug
                
Bezug
Beziehung der Funktion zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:39 Mi 28.10.2015
Autor: Joseph95

Okey, soweit habe ich es jetzt dank dir verstanden. Der rechte Teil der Ungleichung, sprich:
[mm] \summe_{i=1}^{n}\bruch{1}{i} [/mm]
entspricht damit der Obersumme. Dann gehe ich mal stark davon aus, dass
[mm] \summe_{i=1}^{n}\bruch{1}{i}-1 [/mm]
der Untersumme entsprechen soll.
Hier habe ich ein Problem, ich kenne die Untersumme definiert als:
[mm] \summe_{i=2}^{n+1}\bruch{1}{i} [/mm]
Jedoch weiß ich nicht was die Bedeutung von -1 sein soll, beziehungsweise wie ich aus
[mm] \summe_{i=2}^{n+1}\bruch{1}{i} [/mm]
schließen kann, dass [mm] \summe_{i=1}^{n}\bruch{1}{i}-1 \le [/mm] dem Integral ist?


Vg,
Joseph95

Bezug
                        
Bezug
Beziehung der Funktion zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Do 29.10.2015
Autor: hippias

Dann vergleiche die beiden Terme: wodurch unterscheiden sie sich? was wurde gekürzt?

Bezug
                        
Bezug
Beziehung der Funktion zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Do 29.10.2015
Autor: fred97


> Okey, soweit habe ich es jetzt dank dir verstanden. Der
> rechte Teil der Ungleichung, sprich:
>  [mm]\summe_{i=1}^{n}\bruch{1}{i}[/mm]
>  entspricht damit der Obersumme.

Das stimmt. Die Obersumme [mm] O_n [/mm] ist also =f(n)


>  Dann gehe ich mal stark
> davon aus, dass
>  [mm]\summe_{i=1}^{n}\bruch{1}{i}-1[/mm]
>  der Untersumme entsprechen soll.


Nein.


> Hier habe ich ein Problem, ich kenne die Untersumme
> definiert als:
>  [mm]\summe_{i=2}^{n+1}\bruch{1}{i}[/mm]

Das stimmt. Die Untersumme [mm] U_n [/mm] ist also [mm] =\summe_{i=2}^{n+1}\bruch{1}{i} [/mm]

Überlege Dir:

  [mm] U_n=f(n)+\bruch{1}{n+1}-1 [/mm]


>  Jedoch weiß ich nicht was die Bedeutung von -1 sein soll,
> beziehungsweise wie ich aus
> [mm]\summe_{i=2}^{n+1}\bruch{1}{i}[/mm]
>  schließen kann, dass [mm]\summe_{i=1}^{n}\bruch{1}{i}-1 \le[/mm]
> dem Integral ist?


Wir haben dann

$f(n)-1 [mm] \le U_n \le \integral_{1}^{n+1}{1/x dx} \le f(n)=O_n$ [/mm]

FRED

>  
>
> Vg,
>  Joseph95


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]