www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Beweisen d. vollst. Induktion
Beweisen d. vollst. Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen d. vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Mo 09.04.2012
Autor: fabian1991

Aufgabe
Beweisen Sie durch vollständige Induktion, dass die Behauptung
[mm] B(n)=\summe_{k=1}^{n}(k)(k!)=(n+1)!-1 [/mm]
wahr ist für alle natürlichen Zahlen n

So,
ich bin jetzt so weit gekommen, dass ich auf der linken Seite stehen habe:
(n+1)! + (n+1)(n+1)! - 1 und das auf folgendes führen muss:
(n+2)! -1

durch bisschen einsetzen habe ich fest gestellt, dass das wirklich das gleiche ist, aber wir forme ich das so um, dass mein Prof das auch anerkennt?
Grüße

        
Bezug
Beweisen d. vollst. Induktion: ausklammern
Status: (Antwort) fertig Status 
Datum: 13:44 Mo 09.04.2012
Autor: Loddar

Hallo Fabian!


Klammere aus den ersten beiden Summanden $(n+1)!_$ aus.


Gruß
Loddar


Bezug
                
Bezug
Beweisen d. vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Mo 09.04.2012
Autor: fabian1991

meinst du (n+1)! oder (n+1) ausklammern?

(n+1)!=n!(n+1).
da hab ich n!(n+1)+(n!)(n+1)² -1
=
(n+1)(n!+(n+1)!)-1
aber irgendwie komm ich nicht weiter -.-
Grüße

Bezug
                        
Bezug
Beweisen d. vollst. Induktion: wie oben geschrieben
Status: (Antwort) fertig Status 
Datum: 13:58 Mo 09.04.2012
Autor: Loddar

Hallo Fabian!


> meinst du (n+1)! oder (n+1) ausklammern?

Genauso wie ich es geschrieben habe.


$(n+1)!-1+(n+1)*(n+1)! \ = \ (n+1)!+(n+1)*(n+1)!-1 \ = \ [mm] (n+1)!*\left[1+(n+1)*1\right]-1 [/mm] \ = \ (n+1)!*(1+n+1)-1 \ = \ ...$


Gruß
Loddar


Bezug
                                
Bezug
Beweisen d. vollst. Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 Mo 09.04.2012
Autor: fabian1991

Danke ich hab die Lösung:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]