www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweisen Sie:
Beweisen Sie: < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen Sie:: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Do 05.08.2004
Autor: Sandycgn

Ist eine Funktion f integrierbar und F eine Stammfunktion von f, so gilt:

$ [mm] \integral_{a}^{b} f(px+q)\, [/mm] dx = [mm] \bruch{1}{p} [/mm] F(px + q) [mm] \left|_a^b $ (für $ p \not=0 $ )! [/mm]

        
Bezug
Beweisen Sie:: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Do 05.08.2004
Autor: andreas

hi

ich nehem mal an, da ist ein x verloren gegangen und du willst zeigen, dass
[m] \displaystyle{ \int_a^b f(px + q) \; \text{d}x = \left. \frac{1}{p} F(px + q) \right|_{x=a}^b \qquad \text{für } p \not= 0, \; F'(x) = f(x), \; F \text{ stetig differenzierbar}} [/m]

gesetzt den fall du darfst integration durch substitution voraussetzen, dann ist das durch die substitution [m] y = px + q [/m] sofort erledigt, wenn nicht müsste man sich was überlegen, da fällt mir so ad hoc nichts ein.

melde dich nochmal, ob du mit diesen informationen schon bedient bist, oder was du voraussetzen darfst.

andreas

Bezug
                
Bezug
Beweisen Sie:: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Do 05.08.2004
Autor: Sandycgn

Könnte viell. jemand einen kompletten Lösungsweg hinschreiben?
Mir ist nicht ganz klar, was mit der Schreibweise ausgedrückt werden soll. soll f(px+q) heißen, dass wir ne Funktion mit y=px+q haben?

Wenn ja, dann würde ja auch heißen, dass f(x) y0x bedeuten würde.
Ich versteh das irgendwie nicht

Bezug
                        
Bezug
Beweisen Sie:: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:10 Do 05.08.2004
Autor: Marc

Hallo Sandycgn,

> Könnte viell. jemand einen kompletten Lösungsweg
> hinschreiben?

Es scheint, als ob unser Forum nicht deiner Intuition entgegenkommt -- Es wäre nett, wenn "Mitteilungsarktikel" keine Fragen enthalten, da sie sonst leicht übersehen werden.

> Mir ist nicht ganz klar, was mit der Schreibweise
> ausgedrückt werden soll. soll f(px+q) heißen, dass wir ne
> Funktion mit y=px+q haben?

Nein, das soll heißen, dass in die Funktion f der Term "px+q" eingesetzt wird.

Beispiel:
Du hast die Funktion [mm] $f(x)=3x^2+4x$. [/mm] Deren Stammfunktion ist (u.a.) bekanntlich [mm] $F(x)=x^3+2x^2$. [/mm]

Nun siehst du das Integral [mm] $\integral 3(2x-1)^2+4(2x-1)\;dx$ [/mm] und kannst nun folgendes erkennen und schreiben:

[mm] $\integral 3(2x-1)^2+4(2x-1)\;dx=\integral f(2x-1)\;dx=\integral f(px+q)\;dx$ [/mm] mit p=2 und q=-1
[mm] $=\bruch{1}{p}*F(px+q)=\bruch{1}{2}*F(2x-1)=\bruch{1}{2}*(2x-1)^3+2(2x-1)^2$ [/mm]

So konntest du die Integration der "neuen" Funktion [mm] $3(2x-1)^2+4(2x-1)$ [/mm] auf die Integration der alten Funktion [mm] $3x^2+4x$ [/mm] zurückführen -- mit der obigen Regel.

> Wenn ja, dann würde ja auch heißen, dass f(x) y0x bedeuten
> würde.
>  Ich versteh das irgendwie nicht

Jetzt?
Es bleibt ja noch für dich, die Behauptung zu beweisen (dazu habe ich ja auch bereits einen Tipp gegeben).

Viele Grüße,
Marc

Bezug
                                
Bezug
Beweisen Sie:: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 Do 05.08.2004
Autor: Sandycgn

o, sorry, ich habe immer auf das falsche Kästchen geklickt, werde ab sofort das richtige anklicken, wenn ich weitere Fragen habe....
Hmmmm... Vielen Dank. Das ist ja alles sehr einleuchtend jetzt.

Ich frage mich nun, wie ich das beweisen soll?!?! Wie lautet denn die allg. Formel für JEDE Funktionsart? Die gibt's doch gar nicht. Die bräuchte ich doch um das zu beweisen, oder?

Bezug
                                        
Bezug
Beweisen Sie:: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Do 05.08.2004
Autor: Sandycgn

Wenn man diese Erkenntnis dann anwendet, dann müsste das an folgendem Beispiel ja so aussehen, oder?:

$ [mm] \integral_{}{} \bruch{1}{5x + 6}\, [/mm] dx $

Dann nehme ich der Einfachkeit halber folgendes Integral:

$ [mm] \integral_{}{} \bruch{1}{x}\, [/mm] dx = ln [mm] \left| x \right| [/mm] = F(X) $
$ [mm] \rightarrow [/mm] $   $ F(5x + 6) = ln [mm] \left| 5x + 6 \right| [/mm] $
mit $ p = 5$ und $ q = 2 $

$ [mm] \rightarrow [/mm] $   $ [mm] \integral_{}{} \bruch{1}{5x + 6}\, [/mm] dx  = [mm] \bruch{1}{5} [/mm] * ln [mm] \left| 5x + 6 \right| [/mm] $

Stimmt das so?

Bezug
                                                
Bezug
Beweisen Sie:: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Do 05.08.2004
Autor: Marc

Hallo Sandycgn!

> Wenn man diese Erkenntnis dann anwendet, dann müsste das an
> folgendem Beispiel ja so aussehen, oder?:
>  
> [mm]\integral_{}{} \bruch{1}{5x + 6}\, dx[/mm]
>  
> Dann nehme ich der Einfachkeit halber folgendes Integral:
>  
> [mm]\integral_{}{} \bruch{1}{x}\, dx = ln \left| x \right| = F(X)[/mm]
>  
> [mm]\rightarrow[/mm]   [mm]F(5x + 6) = ln \left| 5x + 6 \right|[/mm]
>  mit [mm]p = 5[/mm]
> und [mm]q = 2[/mm]
>  
> [mm]\rightarrow[/mm]   [mm]\integral_{}{} \bruch{1}{5x + 6}\, dx = \bruch{1}{5} * ln \left| 5x + 6 \right|[/mm]
>  
>
> Stimmt das so?

[ok]

Nun siehst du, dass man mit dieser Formel eine ganze Reihe weiterer Funktionen integrieren kann.

Viele Grüße,
Marc

Bezug
                                        
Bezug
Beweisen Sie:: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Do 05.08.2004
Autor: Marc

Hallo Sandycgn!

>  Hmmmm... Vielen Dank. Das ist ja alles sehr einleuchtend
> jetzt.
>  
> Ich frage mich nun, wie ich das beweisen soll?!?! Wie
> lautet denn die allg. Formel für JEDE Funktionsart? Die
> gibt's doch gar nicht. Die bräuchte ich doch um das zu
> beweisen, oder?

Verstehe ich nicht ganz?! [aeh]
Was meinst du mit jeder Funktionsart? Meinst du damit, dass man das f nicht kennt?

Falls du das meinst: Obwohl du f (und damit natürlich auf F) nicht kennst, kannst du [mm] $\bruch{1}{p}*F(px+q)$ [/mm] ableiten und bestätigen, dass diese Ableitung f(px+q) ist.

Die ganze zu zeigende Behauptung läßt sich auch so formulieren:

F Stammfunktion zu f [mm] $\Rightarrow$ $\bruch{1}{p}*F(px+q)$ [/mm] Stammfunktion zu f(px+q)

oder noch anders und kompakter, aber äquivalent:

$F'=f$ [mm] $\Rightarrow$ $\left(\bruch{1}{p}*F(px+q)\right)'=f(px+q)$ [/mm]

Diese letzte Aussage würde ich versuchen zu zeigen (Tipp: Kettenregel anwenden).

Falls du es noch nicht hinbekommst, melde dich bitte nochmal, dann führe ich es vor (ist aber nur eine Zeile, also erwarte nichts spektakuläres).

Viele Grüße,
Marc

Bezug
                                                
Bezug
Beweisen Sie:: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:08 Fr 06.08.2004
Autor: Sandycgn

Ooooo, ja! Danke! Das ist ja so easy!
Moment, hier ist meine Lösung:

$ [mm] [(\bruch [/mm] {1}{p} * F(px + q)]' = f(px + q) $

Kettenregel: $ [ [mm] \bruch [/mm] {1}{p} * F(h(x))]' = [mm] \bruch [/mm] {1}{p} * F'(h(x)) * h'(x) $

$ [mm] [(\bruch [/mm] {1}{p} * F(px + q)]' = [mm] \bruch{1}{p} [/mm] * f(px + q) * p $

Dann kürze ich das $ p $ weg und erhalte:

$ f(px + q) $


Sooo einfach im Grunde! Ich komme manchmal auf die einfachsten Dinge nicht. Das ist ja wie verhext.
Aber diese Formel braucht man doch nicht, oder? Also eigtl. ist das ja so schon klar! Zumindest berücksichtigt man das doch immer bei der Integration...

Vielen lieben Dank jedoch!



Bezug
                                                        
Bezug
Beweisen Sie:: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 Fr 06.08.2004
Autor: Marc

Hallo Sandycgn!

> Ooooo, ja! Danke! Das ist ja so easy!
>  Moment, hier ist meine Lösung:
>  
> [mm][(\bruch {1}{p} * F(px + q)]' = f(px + q)[/mm]
>  
> Kettenregel: [mm][ \bruch {1}{p} * F(h(x))]' = \bruch {1}{p} * F'(h(x)) * h'(x)[/mm]
>  
>
> [mm][(\bruch {1}{p} * F(px + q)]' = \bruch{1}{p} * f(px + q) * p[/mm]
>  
>
> Dann kürze ich das [mm]p[/mm] weg und erhalte:
>  
> [mm]f(px + q)[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Exakt :-)
  

> Sooo einfach im Grunde! Ich komme manchmal auf die
> einfachsten Dinge nicht. Das ist ja wie verhext.
>  Aber diese Formel braucht man doch nicht, oder? Also
> eigtl. ist das ja so schon klar! Zumindest berücksichtigt
> man das doch immer bei der Integration...

Welche Formel meinst du denn hier? Die, dass F'=f ist?

Ich nehme auch mal an, dass dir die exakte Formulierung eines solchen Beweises Probleme bereitet, deswegen versuche ich mich mal an einer solchen:

Vor.: f integrierbar, F Stammfunktion von f
Beh.: $ \integral_{a}^{b} f(px+q)\, dx = \bruch{1}{p} F(px + q) \left|_a^b $ (für $ p \not=0 $ )!
Bew.: Setze g(x):=f(px+q) und $G(x):=\bruch{1}{p} F(px + q)$
Es ist nur zu zeigen, dass G'(x)=g(x), weil dann nach dem Hauptsatz in der Integral- und Differenzialrechnung gilt: $\integral_a^b g(x)\;dx=G(b)-G(a)=\left.G(x)\right|_a^b$.

$G'(x)$
$=\left(\bruch{1}{p} F(px + q)\right)'$  (Kettenregel)
$=p*\bruch{1}{p}*F'(px+q)$
$=F'(px+q)$  (es ist F'=f nach Voraussetzung, da F Stammfunktion zu f ist)
$=f(px+q)$
$=g(x)$ $\Box$

Viele Grüße,
Marc

Bezug
                                                                
Bezug
Beweisen Sie:: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:58 Fr 06.08.2004
Autor: Sandycgn

Nein, ich meine das $ [mm] \bruch{1}{p} [/mm] F(px + q) $

Beim Integrieren selbst, wie auch bei meinem Beispiel, merke ich doch, dass ich dann beim ableiten bspweise. das fünffache habe. Also schreibe ich dann vor die Stammfunktion $ [mm] \bruch{1}{5} [/mm] $.

Danke jedenfalls für deine Bemühungen. Du hast Recht, mit den exakten mathemat. Ausdrücken tu ich mich noch sehr schwer, v.a. weil in der Schule damals nie soviel Wert darauf gelegt wurde...

Bezug
        
Bezug
Beweisen Sie:: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Do 05.08.2004
Autor: Marc

Hallo Sandycgn,

> Ist eine Funktion f integrierbar und F eine Stammfunktion
> von f, so gilt:
>  
> [mm]\integral_{a}^{b} f(p+q)\, dx = \bruch{1}{p} F(px + q) \left|_a^b[/mm]
>   (für [mm]p \not=0[/mm] )!

Hier reicht es doch einfach, den Hauptsatz der Integral- und Differenzialrechnung zu überprüfen, also zu zeigen, dass [mm] $\left(\bruch{1}{p} F(px + q)\right)'=f(px+q)$. [/mm]

Oder übersehe ich etwas?

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]