www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Beweise zur Abzählbarkeit
Beweise zur Abzählbarkeit < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise zur Abzählbarkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:31 Sa 08.11.2008
Autor: GamboJames

Aufgabe
Beweisen Sie die folgenden Behauptungen:
(1) Teilmengen abzählbarer Mengen sind abzählbar.
(2) Ist n eine natürliche Zahl [mm] \ge [/mm] 2, dann gilt [mm] \underbrace{\IN\times\ldots\times\IN}_{n-mal}\approx\IN. [/mm]
(3) Sind [mm] A_{1},\ldots,A_{n} [/mm] abzählbar, dann ist [mm] A_{1}\times\ldots\times A_{n} [/mm] abzählbar.

Zu 1. Habe ich mir folgendes gedacht:

Sei M ein beliebige abzählbare Menge und [mm] P\subseteq [/mm] M.
Eine Menge M ist abzählbar, wennn eine Injektion f: [mm] M\to\IN [/mm] mit [mm] x\mapstof(x) [/mm] existiert. Daher, für alle [mm] n\in\IN [/mm] existiert höchstens ein [mm] m\inM [/mm] oder für alle [mm] m_{1},m_{2}\inM [/mm] gilt [mm] f(m_{1})\not=f(m_{2}). [/mm] Da für alle [mm] p\inP [/mm] gilt [mm] p\inM [/mm] haben auch alle Elemente in P die Eigenschaften aus M und somit gilt auch für alle [mm] p_{1},p_{2}\inP [/mm] gilt [mm] f(p_{1})\not=f(p_{2}). [/mm]
Reicht das, bzw. ist das so korrekt?

zu 2. fehlt mir der Ansatz

und zu 3:
Für 2 Mengen M und N gilt: Sind M und N abzählbar, so ist auch [mm] M\timesN [/mm] abzählbar. Aber das wird als Beweis wohl nicht ausreichen, um die Aufgabe zu beweisen.

Kann mir da jemand weiterhelfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweise zur Abzählbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Sa 08.11.2008
Autor: abakus


> Beweisen Sie die folgenden Behauptungen:
>   (1) Teilmengen abzählbarer Mengen sind abzählbar.
>   (2) Ist n eine natürliche Zahl [mm]\ge[/mm] 2, dann gilt
> [mm]\underbrace{\IN\times\ldots\times\IN}_{n-mal}\approx\IN.[/mm]
>   (3) Sind [mm]A_{1},\ldots,A_{n}[/mm] abzählbar, dann ist
> [mm]A_{1}\times\ldots\times A_{n}[/mm] abzählbar.
>  Zu 1. Habe ich mir folgendes gedacht:
>  
> Sei M ein beliebige abzählbare Menge und [mm]P\subseteq[/mm] M.
>  Eine Menge M ist abzählbar, wennn eine Injektion f:
> [mm]M\to\IN[/mm] mit [mm]x\mapstof(x)[/mm] existiert. Daher, für alle [mm]n\in\IN[/mm]
> existiert höchstens ein [mm]m\inM[/mm] oder für alle [mm]m_{1},m_{2}\inM[/mm]
> gilt [mm]f(m_{1})\not=f(m_{2}).[/mm] Da für alle [mm]p\inP[/mm] gilt [mm]p\inM[/mm]
> haben auch alle Elemente in P die Eigenschaften aus M und
> somit gilt auch für alle [mm]p_{1},p_{2}\inP[/mm] gilt
> [mm]f(p_{1})\not=f(p_{2}).[/mm]
>  Reicht das, bzw. ist das so korrekt?
>  
> zu 2. fehlt mir der Ansatz

Sagt dir das Cantorsche Diagonalisierungsverfahren etwas? Damit zeigst du zunächst, dass
[mm] \IN [/mm] x [mm] \IN [/mm] auf [mm] \IN [/mm] abgebildet werden kann. (Rest mit vollständiger Induktion.)
Gruß Abakus


>  
> und zu 3:
>  Für 2 Mengen M und N gilt: Sind M und N abzählbar, so ist
> auch [mm]M\timesN[/mm] abzählbar. Aber das wird als Beweis wohl
> nicht ausreichen, um die Aufgabe zu beweisen.
>  
> Kann mir da jemand weiterhelfen?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Beweise zur Abzählbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Sa 08.11.2008
Autor: GamboJames

Ah ok das hilft mir erstmal weiter bei 2. Ich werde es mal damit versuchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]