www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Beweise mithilfe des Skalarpro
Beweise mithilfe des Skalarpro < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise mithilfe des Skalarpro: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 So 18.01.2009
Autor: f4b

Aufgabe
Beweise mithilfe des Skalarproduktes: In einem Rechteck sind die Diagonalen gleich lang.

Hallo zusammen,

ich soll beweisen, dass die Diagonalen in einem Rechteck gleich lang sind.

Zuerst haben wir eine Skizze gemacht vom dem Rechteck (Unten links A, unten rechts B, oben rechts C, oben links A).

Dann den Satz der Behauptung aufgestellt: [mm] \overline{|AC|} [/mm] = [mm] \overline{|BD|} [/mm]

Anschließend die beiden Voraussetzungen formuliert:
Rechteck: [mm] \overline{a\*b}=0 [/mm]
und
[mm] Parallelogramm:\overline{AB}=\overline{DC}=\overline{a} [/mm] ; [mm] \overline{BC}=\overline{AD}=\overline{b} [/mm]


Die Diagonalen bilden ja Dreiecke: [mm] \overline{AC}=\overline{a}+\overline{b} [/mm] ;  [mm] \overline{BD}= \overline{-a}+\overline{b} [/mm]

Nun kann man das ja alles schön umformen und einsetzen, sodass das steht:
[mm] \overline{|AC|}= \overline{|BD|}\Rightarrow\overline{|AC|²}=\overline{|BD|²} [/mm] = (bisschen was [mm] ausgelassen)...=4*\overline{a}*\overline{b}=0 \Rightarrow [/mm] 0

Dazu habe ich jetzt drei Fragen:

Erstens: Warum kann man die Voraussetzung einfach so vom Parallelogramm nehmen?
Zweitens: Warum sind im Behauptungssatz Betragsstriche, geht das nicht auch ohne?
Drittens: Warum ist am Ende bewiesen, dass, wenn 0 rauskommt, die Diagonalen gleich lang sind?


Habe alles bis auf diese 3 Dinge verstanden ;) Wäre nett, wenn mir noch irgendwer dies beantworten könnte

Liebe Grüße

        
Bezug
Beweise mithilfe des Skalarpro: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 So 18.01.2009
Autor: Event_Horizon

Hallo!

Du machst hier Vektorrechnung. Daher könntest du hier besser schreiben:

[mm] \vec{a} [/mm]   (\vec{a})

und für die Vektoren aus zwei Buchstaben besser:
[mm] \overrightarrow{AB} [/mm]   (\overrightarrow{AB})

So ein Vektor ist ja nun ein Objekt bestehend aus mehreren Zahlen, die dir die Differenz der Koordinaten zwischen zwei Punkten wiedergibt.

Dein Beweis geht nun von einem allgemeinerem Viereck aus, dem Parallelogramm. Bei dem sind die gegenüberliegenden Seiten gleich lang und parallel.

Es gilt also

[mm] $\overrightarrow{AB}=\overrightarrow{DC}=\vec{a} [/mm] $

wegen der Differenzen sind die beiden Vektoren ja gleich, auch wenn sie unterschiedliche Seiten beschreiben sollen.

Dann werden die Diagonalen im Parallelogramm berechnet. Und deren Vektoren sind auf keinen Fall gleich, weil sie nicht parallel sind.

Allerdings suchst du nun alle Parallelogramme, für die die Länge der Diagonalen gleich ist, und die Länge wird durch den Betrag eines Vektors angegeben:

[mm] $|\overrightarrow{AC}|=|\overrightarrow{BD}|$ [/mm]

Im Laufe deines Beweises kommt raus, daß immer dann der Fall ist, wenn [mm] \vec{a}*\vec{b}=0 [/mm] ist. Wenn das Skalarprodukt null ist, ist entweder einer der Vektoren gleich dem Nullvektor, oder die beiden Vektoren stehen senkrecht aufeinander. Tja, und ein Parallelogramm, bei dem sich berührende Seiten senkrecht sind, ist ein...?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]