www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Beweise mit Vektoren
Beweise mit Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise mit Vektoren: Aufgabe 3
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:41 Do 05.10.2006
Autor: LudwigE

Aufgabe
Entsteht ein Viereck im Raum, also ein Viereck, dessen Ecken nicht alle in einer Ebene liegen
Beweisen Sie:
Die Seitenmitten dieses Vierecks sind die Eckpunkte eines Parallelogramms

Wäre schön, wenn mir bei dieser Aufgabe geholfen werden könnte, da ich hier auf keine adäquate Lösung komme.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweise mit Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Fr 06.10.2006
Autor: Event_Horizon

Wäre schön, wenn du etwas ausführlicher schreiben würdest.


Du hast 4 Punkte im Raum : [mm] \vec{A}, \vec{B}, \vec{C}, \vec{D} [/mm]

Der Mittelpunkt zwischen zwei Punken A und B ist gegeben durch [mm] \bruch{\vec A + \vec B}{2} [/mm]

Damit kannst du die vier Mittelpunkte ausrechnen. Die Differenz von jeweils zwei solcher Mittelpunkte gibt dir je eine(n) Seite(nvektor) deines Parallelogramms.


Jetzt solltest du zeigen, daß die beiden sich gegenüberliegenden Seitenvektoren des Parallelogramms gleich sind - bis aufs Vorzeichen eventuell.


Bedenke: Die Summe aller vier Seitenvektoren sollte 0 sein, sofern du die Richtung der Vektoren richtig rum gewählt hast. Schließlich kommst du wieder da an, wo du losgegangen bist, wenn du an den vier Seiten entlanggehst!


Ich denke, wenn du damit etwas rumspielst UND VOR ALLEM EINE ZEICHNUNG MACHST, kommst du schnell zum Ziel.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]