www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Beweise
Beweise < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:22 Do 06.05.2010
Autor: NightmareVirus

Aufgabe
Seien [mm] $x_1, \ldots, x_n \geq [/mm] 0$ mit Rangwertreihe [mm] $x_{(1)}\leq \ldots \leq x_{(n)}$ [/mm] und [mm] $x_{(n)} [/mm] > 0$. Durch die Partialsummen [mm] $S_i [/mm] = [mm] \sum_{j=1}^{i}{x_{(j)}}, [/mm] 1 [mm] \leq [/mm] i [mm] \leq [/mm] n$, und
[mm] $$s_i [/mm] = [mm] \frac{i}{n}, \quad t_i [/mm] = [mm] \frac{S_i}{S_n}, \quad 1\leq [/mm] i [mm] \leq [/mm] n$$
wird eine Folge von Paaren (0,0), [mm] (s_1,t_1), \ldots, (s_n,t_n) [/mm] definiert. Durch diese Punkte wird mittels eines Polygonzugs die stetige Funktion
L:[0:1] [mm] \to [/mm] [0:1] definiert. Zeigen Sie:

a) L ist monton steigend und konvex
b) L(x) [mm] \leq [/mm] x, x [mm] \in [/mm] [0,1]
c) L(x) = x für alle x [mm] \in [/mm] [0,1] [mm] \gdw x_1 [/mm] = [mm] \ldots [/mm] = [mm] x_n [/mm]

Erstmal sry für das komische Diskussionsthema, aber mir ist kein geeigneter Begriff eingefallen der diese Aufgabe beschreiben könnte.

Nun zu den Aufgaben:
a) L ist monoton steigend konnte ich zeigen

L ist konvex, dazu habe ich den Ansatz:

$L$ ist genau dann konvex falls gilt:
[mm] $$L(\tau s_i [/mm] + [mm] (1-\tau)t_i) \leq \tau L(s_i) [/mm] + [mm] (1-\tau)L(t_i)$$ [/mm]

An dieser Stelle sehe ich aber nicht wie ich das weiter umformen kann. Irgendwelche Eigenschaften wie z.b. Linearität die mir weiterhelfen könnten sind nicht gegeben.

b) L(x) [mm] \leq [/mm] x, x [mm] \in [/mm] [0,1]
d.h. es ist zu zeigen [mm] L(s_i) \leq s_i \forall s_i \in [/mm] [0,1]
und das ist äquivalent zu
[mm] $$t_i \leq s_i \forall s_i \in [/mm] [0,1]$$
Setzt man die bekannten Formeln ein erhält man die Ungleichung:
[mm] $$\frac{S_i}{S_n} \leq \frac{i}{n} \forall [/mm] i [mm] \in [/mm] [0,n]$$
Ersetzt man die [mm] S_i [/mm] durch die Summenschreibweise erhält man:
[mm] $$\frac{\sum_{j=1}^{i}{x_{(j)}}}{\sum_{j=1}^{n}{x_{(j)}},} \leq \frac{i}{n} \forall [/mm] i [mm] \in [/mm] [0,n]$$

und nu?

c) erschließt sich vielleicht wenn man b) gelöst hat.

        
Bezug
Beweise: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Sa 08.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]