www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Beweisdel ' Hospital für oo/oo
Beweisdel ' Hospital für oo/oo < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisdel ' Hospital für oo/oo: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 So 21.04.2013
Autor: nero08

Hallo!

Hier mal der Beweis:

[mm] \limes_{x\rightarrow\ x_{0}} \bruch{f(x)}{g(x)} [/mm] = [mm] \limes_{x\rightarrow\ x_{0}} \bruch{f(x)-f(x_{0})}{g(x)-g(x_{0})} [/mm] =(MWS) [mm] \limes_{x\rightarrow\ x_{0}} \bruch{f'(x_{0}+c(x-x_{0})}{g'(x_{0}+c(x-x_{0})} [/mm] =(wenn f',g' stetig) = [mm] \bruch{f'(x_{0})}{g'(x_{0})} [/mm]

Vorraussetzung:

[mm] \limes_{x\rightarrow\ a^{+}} \bruch{f'(x)}{g'(x)} [/mm] =K  

[mm] \limes_{x\rightarrow\ a^{+}} [/mm] f(x) = [mm] \limes_{x\rightarrow\ a^{+}} [/mm] g(x) = [mm] \infty [/mm]

[mm] \forall \varepsilon [/mm] >0 [mm] \exists \delta: |\bruch{f'(x)}{g'(x)} [/mm] -K| < [mm] \bruch{\varepsilon}{2} \forall [/mm] x [mm] \in [/mm] (a,a+ [mm] \delta) [/mm]

[mm] MWS[x,x_{0}] |\bruch{f(x)-f(x_{0})}{g(x)-g(x_{0})}| [/mm] = [mm] \bruch{f'(c)}{g'(c)} [/mm] => [mm] |\bruch{f(x)-f(x_{0})}{g(x)-g(x_{0})} [/mm] - K| < [mm] \bruch{\varepsilon}{2} [/mm]

Verwende: [mm] \bruch{f(x)}{g(x)} [/mm] - K =
       (*)
[mm] \bruch{f(x_{0})-K*g(x_{0})}{g(x)} [/mm] + (1- [mm] \bruch{g(x_{0})}{g(x)})*( \bruch{f(x)-f(x_{0})}{g(x)-g(x_{0})} [/mm] - K)

x [mm] \to a^{+} [/mm] wähle [mm] \delta_{1} [/mm] < [mm] \delta, [/mm] sodass (*) < [mm] \bruch{\varepsilon}{2} [/mm]

[mm] =>|\bruch{f(x)}{g(x)} [/mm] - K| [mm] \le \bruch{\varepsilon}{2} [/mm] + [mm] \bruch{\varepsilon}{2} [/mm] = [mm] \varepsilon [/mm]

=> [mm] \limes_{x\rightarrow\ a^{+}} \bruch{f(x)}{g(x)} [/mm] =K


okay nun verstehe ich aber nicht warum folgende gleichheit gilt:
[mm] \bruch{f(x)}{g(x)} [/mm] - K =
[mm] \bruch{f(x_{0})-K*g(x_{0})}{g(x)} [/mm] + (1- [mm] \bruch{g(x_{0})}{g(x)})*( \bruch{f(x)-f(x_{0})}{g(x)-g(x_{0})} [/mm] - K)

kann mir jemand die rechenschritte anschreiben? die wurden bei uns leider nur sehr grob behandelt...

lg

        
Bezug
Beweisdel ' Hospital für oo/oo: nachrechnen !
Status: (Antwort) fertig Status 
Datum: 13:02 So 21.04.2013
Autor: Al-Chwarizmi


> [m> okay nun verstehe ich aber nicht warum folgende gleichheit
> gilt:
>  [mm]\bruch{f(x)}{g(x)}[/mm] - K =
> [mm]\bruch{f(x_{0})-K*g(x_{0})}{g(x)}\ +\ (1- \bruch{g(x_{0})}{g(x)})*( \bruch{f(x)-f(x_{0})}{g(x)-g(x_{0})}- K)[/mm]  
>  
> kann mir jemand die rechenschritte anschreiben? die wurden
> bei uns leider nur sehr grob behandelt...


Hallo nero08,

diese Umformung kann man einfach durch Nachrechnen
verifizieren. Starte also mit dem Term der rechten
Seite und vereinfache ihn.
Ich habe das auch getan und zur Vereinfachung die
Bezeichnungen

$\ f:=f(x)$
$\ g:=g(x)$
$\ [mm] f_0:=f(x_0)$ [/mm]
$\ [mm] g_0:=g(x_0)$ [/mm]

verwendet. Das macht die Rechnung übersichtlich.
Natürlich muss man $\ [mm] g\not=0$ [/mm] und $\ [mm] g\not= g_0$ [/mm] voraussetzen.

LG ,   Al-Chw.


Bezug
                
Bezug
Beweisdel ' Hospital für oo/oo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:57 So 21.04.2013
Autor: nero08

besten dank!

es stellt sich als einfacher heraus von rechts zu starten! :)

Bezug
                        
Bezug
Beweisdel ' Hospital für oo/oo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:10 So 21.04.2013
Autor: Al-Chwarizmi


> besten dank!
>  
> es stellt sich als einfacher heraus von rechts zu starten!
> :)


Ja. Aber bei derartigen Umformungen innerhalb eines
Beweises stellt sich doch oft auch die Frage: wie kommt
man darauf, gerade die und die Umformungen zu machen
bzw. "Tricks" anzuwenden ?
Wie viele Studenten haben doch schon hilflos gestöhnt:
"darauf wäre ich niiiie gekommen !"

In einer gut gehaltenen Vorlesung sollte der Dozent
an solchen Stellen wenigstens nützliche Hinweise
geben, wie man da auch selber weiter kommen kann.

LG ,   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]