www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweis zu stetigen Fkten
Beweis zu stetigen Fkten < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu stetigen Fkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Di 20.06.2006
Autor: sclossa

Aufgabe
Beweis zu:
Jede in einem kompakten Intervall stetige Funktion ist beschränkt und nimmt ihr Maximum und Minimum an.

Der Anfang vom Beweis ist mir klar.

Sei A:=sup{f(x), x [mm] \in [/mm] [a,b]}  [mm] \in \IR [/mm] {oo}
( A=oo fals f nicht nach oben beschränkt ist)
Dann existiert eine Folge Xn  [mm] \in [/mm] [a,b], n  [mm] \in [/mm] N mit
lim f(Xn) = A.
Da die Folge beschränkt ist besitzt sie nach Bolzana Weierstraß eine
konvergente Teilfolge (Xnk) mit
[mm] \limes_{k\rightarrow\infty} [/mm] Xnk =: p [mm] \in [/mm] [a,b]
Mit der Stetigkeit folgt somit:
f(p) =  [mm] \limes_{k\rightarrow\infty} [/mm] f(Xnk) = A, insbesondere A [mm] \in \IR. [/mm]
Also ist f nach oben beschränkt und nimmt in p ihr Maximum an.

Ich kann alles nachvollziehen, nur das Schluss bereitet mir Probleme. Warum muss A [mm] \in \IR [/mm] sein???  Wie begründet man das? Kann mir jemand die vorletzte Zeile mal etwas erklären?

Danke Sclossa

        
Bezug
Beweis zu stetigen Fkten: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Mi 21.06.2006
Autor: MatthiasKr

Hallo Sclossa,

> Beweis zu:
>  Jede in einem kompakten Intervall stetige Funktion ist
> beschränkt und nimmt ihr Maximum und Minimum an.
>  Der Anfang vom Beweis ist mir klar.
>  
> Sei A:=...
>  ( A=oo fals f nicht nach oben beschränkt ist)
>  Dann existiert eine Folge Xn  [mm]\in[/mm] [a,b], n  [mm]\in[/mm] N mit
>  lim f(Xn) = A.
>  Da die Folge beschränkt ist besitzt sie nach Bolzana
> Weierstraß eine
>  konvergente Teilfolge (Xnk) mit
>  [mm]\limes_{k\rightarrow\infty}[/mm] Xnk =: p [mm]\in[/mm] [a,b]
>  Mit der Stetigkeit folgt somit:
>  f(p) =  [mm]\limes_{k\rightarrow\infty}[/mm] f(Xnk) = A,
> insbesondere A [mm]\in \IR.[/mm]
>  Also ist f nach oben beschränkt
> und nimmt in p ihr Maximum an.
>  
> Ich kann alles nachvollziehen, nur das Schluss bereitet mir
> Probleme. Warum muss A [mm]\in \IR[/mm] sein???  Wie begründet man
> das? Kann mir jemand die vorletzte Zeile mal etwas
> erklären?


Die Maximalfolge [mm] $x_{n_k}$ [/mm] konvergiert aufgrund von Bolzano-Weierstraß gegen einen punkt [mm] $p\in [/mm] [a,b]$. Da f auf $[a,b]$ stetig ist, muß es einen wohldefinierten funktionswert [mm] $f(p)\in \IR$ [/mm] geben, so dass [mm] $\lim_{x_{n_k}\to \infty}f(x_{n_k})=f(p)$ [/mm] gilt. das ist einfach die definition der stetigkeit.

Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]