www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Beweis von erzeugender Fkt.
Beweis von erzeugender Fkt. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von erzeugender Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 So 22.06.2008
Autor: AnalysisKampfFlo

Aufgabe
Aufgabe 5.1

Man betrachte eine Folge unabhängiger Bernoulli-Experimente mit Erfolgswahrscheinlichkeit p ∈ (0, 1). Die Zufallsvariable [mm] X_r [/mm] gebe die Anzahl der Misserfolge bis zum r-ten Erfolg an. Hierbei ist r = 1, 2, . . . ein fester Parameter.

(a) Man zeige, dass für die erzeugende Funktion [mm] gx_r [/mm] gilt

[mm] gx_r(t)=\pmat{ \bruch{p}{1-t(1-p)}}^r, |t|<\bruch{1}{1-p}. [/mm]

(b) Man berechne den Erwartungswert und die Varianz von [mm] X_r. [/mm]

Ich brauche dringend ne Hilfestellung zu a) . Irgendeinen Ansatz, Hinweis.

Vielen Dank.

        
Bezug
Beweis von erzeugender Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Mo 23.06.2008
Autor: wauwau

[mm] P_{r}(X=m) [/mm] sei die Wahrscheinlichkeit, dass der r-te Erfolg nach m Misserfolgen eintrifft.
dann gilt
1. es gibt insgesamt m+r Versuche
2. bie den ersten m+r-1 Versuchen müssen m Misserfolge eintreffen

[mm] \vektor{m+r-1 \\ m} [/mm] ist die anzahl der Möglichkeiten m misserfolge auf m+r-1 Versuche aufzuteilen, daher
und unter den m+r-1 Versuchen muss ich r-1 Erfolge haben, sodaß beim m+r-ten Versuch der r-te Erfolg eintritt

[mm] P_{r}(X=m)=\vektor{m+r-1 \\ m}.(1-p)^{m}.p^{r-1}.r [/mm] = [mm] \vektor{m+r-1 \\ m}.(1-p)^{m}.p^{r} [/mm]

die Erzeugende funktion ist daher

[mm] \summe_{m=0}^{\infty}\vektor{m+r-1 \\ m}.(1-p)^{m}.p^{r}.t^m [/mm] = [mm] p^{r}.\summe_{m=0}^{\infty}\vektor{m+r-1 \\ m}.((1-p).t)^m [/mm]

Es bleibt daher zu zeigen, dass mit (1-p).t = x


[mm] \summe_{m=0}^{\infty}\vektor{m+r-1 \\ m}.x^m [/mm] = [mm] (\bruch{1}{1-x})^r [/mm]

Die Taylorentwicklung von  [mm] (\bruch{1}{1-x})^r [/mm] zeigt,

dass die k-te Ableitung von (1-x)^(-r) = [mm] \bruch{(r+k-1)!}{(r-1)!} [/mm] und daher der k-te Taylorkoeffizient genau der gesuchte Ausdruck ist..


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]