Beweis von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | 1. Zeigen Sie, dass [mm]b_{n}[/mm][mm]=[/mm][mm] \frac{n + 1}{n^2 + 1} [/mm] eine Nullfolge ist.
2. Zeigen Sie, dass zu jedem r [mm]\in[/mm][mm]\IR[/mm]\ {0} ein [mm]\widetilde{r }[/mm] [mm]\in[/mm][mm]\IR[/mm]mit r [mm][/mm]* [mm]\widetilde{r }[/mm] = 1 existiert.
3. Seien [mm]a_{n}[/mm] und [mm]b_{n}[/mm] Nullfolgen. Zeigen Sie: [mm]c_{n}[/mm] = [mm]a_{n}[/mm]* [mm]b_{n}[/mm] ist wieder eine Nullfolge.
Zu 1.:
[mm]\forall[/mm][mm]\varepsilon[/mm]> 0 [mm]\exists[/mm][mm]n_0[/mm][mm]\in[/mm][mm]\IN[/mm][mm]\forall[/mm]n [mm]\geq[/mm] [mm]n_0[/mm]: |[mm]b_{n}[/mm]| [mm]\leq[/mm] [mm]\varepsilon[/mm]
[mm]b_{n}[/mm] = [mm] \frac{n + 1}{n^2 + 1} [/mm] < [mm]\varepsilon[/mm] <=> n + 1 < [mm]\varepsilon[/mm]* ([mm]n^2[/mm] + 1) <=> n + 1 - [mm]\varepsilon[/mm] <=> [mm]\varepsilon[/mm] * [mm]n^2[/mm]
<=> [mm] \frac{n + 1 - \varepsilon}{\varepsilon} [/mm] < [mm]n^2[/mm] <=> [mm]\wurzel{\frac{n + 1 - \varepsilon}{\varepsilon} }[/mm] < n
Wäre hiermit der Beweis erbracht? Oder muss dabei etwas anderes beachten?
Bei 2. & 3. verstehe ich zwar die einzelnen Elemente, aber nicht wie das Beweisschema abläuft und dieses auszusehen hat?
Vielen Dank im Voraus für eure Hilfe!
Grüße Ptolemaios |
|
|
|
|
moin,
Zur 1.:
Ist die Wurzel wirklich echt kleiner als n?
Wieso gilt das?
Davon abgesehen könntest du auch Grenzwertsätze benutzen um dir das [mm] $\epsilon$ [/mm] zu sparen; natürlich nur so lange du diese schon hattest und benutzen darfst...
Zu 2.:
Um dir hierbei zu helfen müsstest du mal verraten was du denn schon über [mm] $\IR$ [/mm] weißt.
Wie ist [mm] $\IR$ [/mm] definiert?
Was hast du, aus dem du ggf. folgern könntest?
Zu 3.:
Hier kannst du so rangehen wie bei der 1), aber nicht die Betragstriche vergessen.
Dann ein paar Rechenregeln für Beträge, wie man sie auseinanderzieht und das passt. ;)
lg
Schadow
|
|
|
|
|
Hi nochmal,
zur 1.: da [mm]\epsilon[/mm][mm]\geq[/mm] als unser gesuchtes n ist, und wir ja [mm]\epsilon[/mm]davon abziehen, ist die Wurzel doch kleiner als n. Oder liege ich da falsch & der Beweis ist nicht erbracht?
Was genau meinst du mit Grenzwertsätzen? Infima & Maxima? Also solange die Schritte logisch nachvollziehbar sind, dürfen wir soweit ich weiß verwenden was wir wollen
zur 2.: über [mm]\IR[/mm]weiß ich, dass es sozusagen eine "Erweiterung" von [mm]\IQ[/mm]ist, aber {0} ausgeschlossen ist. Und wenn ich für r (1, 2, 3, 4,..., n) einsetze so muss [mm]\tilde{r}[/mm] (1, [mm]\frac{1}{2}[/mm], [mm]\frac{1}{3}[/mm], [mm]\frac{1}{4}[/mm],..., [mm]\frac{1}{n}[/mm]) sein, damit für r * [mm]\widetilde{r }[/mm] = 1 rauskommt.
zur 3.: Ich weiß da leider nicht so ganz wie ich vorgehen soll. Das wäre ja zu zeigen: [mm]
\forall\ \epsilon_1>0: \exists\ n_0\el\ \IN:n>=n_0=>(a_n*b_n)<\epsilon_1
[/mm]. Aber wie?
Danke & Gruß
Ptolemaios
|
|
|
|
|
Moin Ptolemaios,
> zur 1.: da [mm]\epsilon[/mm][mm]\geq[/mm] als unser gesuchtes n ist, und wir ja [mm]\epsilon[/mm]davon abziehen, ist die Wurzel doch kleiner als
> n. Oder liege ich da falsch & der Beweis ist nicht erbracht?
Beim [mm] \varepsilon- [/mm] Kriterium geht es darum ein [mm] n_0=n_0(\varepsilon) [/mm] zu finden, sodass [mm] |b_n|\leq\varepsilon [/mm] für alle [mm] n\geq n_0 [/mm] (siehe deine Definition). Du hast nirgends ein solches angegeben.
> Was genau meinst du mit Grenzwertsätzen? Infima & Maxima?
Nein. Die Grenzwertsätze machen folgende Aussage. Gilt [mm] a_n\to [/mm] a und [mm] b_n\to [/mm] b für [mm] n\to\infty, [/mm] so folgt
(i) [mm] (a_n\pm b_n)\to a\pm [/mm] b für [mm] n\to\infty
[/mm]
(ii) [mm] (a_n*b_n)\to [/mm] a*b für [mm] n\to\infty
[/mm]
(iii) [mm] (a_n/b_n)\to [/mm] a/b für [mm] n\to\infty, [/mm] falls [mm] b,b_n\neq0.
[/mm]
> Also solange die Schritte logisch nachvollziehbar sind,
> dürfen wir soweit ich weiß verwenden was wir wollen
Na dann kürzen wir den Bruch mal mit n:
[mm] \lim_{n\to\infty}\frac{n+1}{n^2+1}=\lim_{n\to\infty}\frac{1+1/n}{n+1/n}
[/mm]
Jetzt kannst du auf der rechten Seite Grenzwertsätze verwenden.
>
>
> zur 2.: über [mm]\IR[/mm]weiß ich, dass es sozusagen eine
> "Erweiterung" von [mm]\IQ[/mm]ist, aber {0} ausgeschlossen ist. Und
> wenn ich für r (1, 2, 3, 4,..., n) einsetze so muss
> [mm]\tilde{r}[/mm] (1, [mm]\frac{1}{2}[/mm], [mm]\frac{1}{3}[/mm], [mm]\frac{1}{4}[/mm],...,
> [mm]\frac{1}{n}[/mm]) sein, damit für r * [mm]\widetilde{r }[/mm] = 1
> rauskommt.
Da [mm] \IR\backslash\{0\} [/mm] multiplikative Gruppe ist, gilt für beliebiges [mm] r\in\IR\backslash\{0\}, [/mm] dass auch [mm] \widetilde{r}:=\frac{1}{r}\in\IR\backslash\{0\} [/mm] und es gilt [mm] r*\widetilde{r }=1.
[/mm]
>
>
> zur 3.: Ich weiß da leider nicht so ganz wie ich vorgehen
> soll. Das wäre ja zu zeigen: [mm]
\forall\ \epsilon_1>0: \exists\ n_0\el\ \IN:n>=n_0=>(a_n*b_n)<\epsilon_1
[/mm].
> Aber wie?
Sei [mm] \varepsilon>0.
[/mm]
Für [mm] n\geq N_1 [/mm] gilt [mm] |a_n|\leq\sqrt{\varepsilon}.
[/mm]
Für [mm] n\geq N_2 [/mm] gilt [mm] |b_n|\leq\sqrt{\varepsilon}.
[/mm]
Dann gilt für [mm] n\geq\max\{N_1,N_2\} [/mm] ?
LG
|
|
|
|
|
Hi,
zur 1.: [mm] \lim_{n\to\infty}\frac{n+1}{n^2+1}=\lim_{n\to\infty}\frac{1+1/n}{n+1/n} [/mm] = [mm] \frac{1}{\lim_{n\to\infty}(n)} [/mm] = [mm] \frac{1}{\infty"} [/mm] = 0
also gilt [mm] b_n \to [/mm] 0 für n -> [mm]\infty[/mm]
Sieht so ein Grenzwertsatzbeweis aus?
Zur 2.: Ist durch [mm] \widetilde{r}:=\frac{1}{r}\in\IR\backslash\{0\} [/mm] der Beweis erbracht? Und was genau ist die multiplikative Gruppe? Wer/was gehört noch zu ihr?
Zur 3.: Für n [mm]\geq[/mm] max {N1, N2} gilt dann [mm] |a_n * b_n|\leq{\varepsilon}. [/mm] Da es sich bei [mm] c_n = a_n * b_n [/mm]
um eine Produktfolge handelt und [mm] a_n [/mm] und [mm] b_n [/mm] für [mm]\limes_{n\rightarrow\infty} [/mm] gegen 0 konvergieren,
folgt für [mm] c_n [/mm] für [mm]\limes_{n\rightarrow\infty} \to[/mm] 0, weil a * b = 0 * 0 = 0.
Das reicht aber nicht als Beweis, oder?
Danke & Gruß
Ptolemaios
|
|
|
|
|
> Hi,
>
> zur 1.:
> [mm]\lim_{n\to\infty}\frac{n+1}{n^2+1}=\lim_{n\to\infty}\frac{1+1/n}{n+1/n}[/mm] = [mm]\frac{1}{\lim_{n\to\infty}(n)}[/mm] = [mm]\frac{1}{\infty"}[/mm] = 0
>
> also gilt [mm]b_n \to[/mm] 0 für n -> [mm]\infty[/mm]
Vorsicht: Grenzwertsätze gelten nur für Folgen, die auch einen Grenzwert haben.
>
> Sieht so ein Grenzwertsatzbeweis aus?
>
>
> Zur 2.: Ist durch
> [mm]\widetilde{r}:=\frac{1}{r}\in\IR\backslash\{0\}[/mm] der Beweis
> erbracht? Und was genau ist die multiplikative Gruppe?
> Wer/was gehört noch zu ihr?
Hast du überhaupt schon einmal etwas von einer Gruppe gehört? Eine Gruppe [mm] (G,\*) [/mm] enthält zu jedem [mm] g\in [/mm] G ein inverses Element g', sodass [mm] g\*g'=e, [/mm] wobei e das neutrale Element ist. Im Fall der multiplikativen Gruppe [mm] \IR^\*:=\IR\backslash\{0\} [/mm] ist [mm] \widetilde{r}:=1/r [/mm] das inverse Element zu r, da [mm] r\*\widetilde{r}=1, [/mm] 1 das neutrale Element.
Je nachdem, welchen Zugang ihr zu den reellen Zahlen gewählt habt, gibt es aber auch andere Möglichkeiten zu begründen, dass [mm] 1/r\in\IR^\*, [/mm] wenn [mm] r\in\IR^\*. [/mm] Man kann das zum Beispiel aus der (Ordnungs-)Vollständigkeit von [mm] \IR [/mm] folgern.
>
>
> Zur 3.: Für n [mm]\geq[/mm] max {N1, N2} gilt dann [mm]|a_n * b_n|\leq{\varepsilon}.[/mm]
> Da es sich bei [mm]c_n = a_n * b_n[/mm]
>
> um eine Produktfolge handelt und [mm]a_n[/mm] und [mm]b_n[/mm] für
> [mm]\limes_{n\rightarrow\infty}[/mm] gegen 0 konvergieren,
>
> folgt für [mm]c_n[/mm] für [mm]\limes_{n\rightarrow\infty} \to[/mm] 0,
> weil a * b = 0 * 0 = 0.
>
> Das reicht aber nicht als Beweis, oder?
Du wirfst Beweis über [mm] \varepsilon- [/mm] Definition und über Grenzwertsätze durcheinander.
Für [mm] n\geq \max(N_1, N_2) [/mm] gilt dann [mm] $|a_n [/mm] * [mm] b_n|\leq|a_n||b_n|\leq\sqrt{\varepsilon}^2=\varepsilon [/mm] $.
LG
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:04 Sa 12.11.2011 | Autor: | kamaleonti |
Hallo Ptolemaios,
warum setzt du den Status deiner Fragen immer wieder auf unbeantwortet?
Wenn das heißen soll, dass dich die Qualität der Antworten nicht zufrieden stellt, dann kannst du das auch anders äußern (zum Beispiel eine neue Frage stellen, was du ja auch getan hast).
Einfach eine Frage wieder auf unbeantwortet zu stellen wirkt jedenfalls etwas unfreundlich gegenüber den Hilfestellern.
LG
|
|
|
|