Beweis volkommene Zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:23 Fr 05.11.2010 | Autor: | lenzlein |
Aufgabe | Eine natürliche Zahl n heißt vollkommen, falls die Summe ihrer echten Teiler gleich n ist. Zum Beispiel ist 6 vollkommen wegen 3+2+1=6. Zeigen Sie:
Ist a [mm] \in \IN [/mm] und [mm] 2^{n} [/mm] - 1 [mm] \in \IP [/mm] , so ist [mm] 2^{n-1} [/mm] * [mm] (2^{n} [/mm] -1 ) vollkommen. |
Bitte helft mir weiter. Ich habe schon sämtliche Foren und Internetseiten durchsucht und habe nur einen Beweis gefunden, den ich nicht verstehe und das will ich nicht in meine Übungsserie schreiben müssen. Ich habe überhaupt keine Ahnung, wie ich hier beginnen kann.
Danke für die Antworten!
LG
lenzlein
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:50 Fr 05.11.2010 | Autor: | leduart |
Hallo
warum schreibst du nicht einfach alle Teiler auf und addierst sie?
da ja [mm] 2^n-1 [/mm] eine Primzahl ist, ist das leicht.
und dann nur noch ausrechnen.
Warum man sich nicht mal hinsetzt und anfängt das hinzuschreiben statt im Internet zu suchen ist für ne zukünftige(n) LehrerIn doch bedenklich ?
erst wenn du beim eigenen Versuch nicht weiterkommst sollte man in Foren nach Hilfe suchen. aber hier steht nichts von eigenen Versuchen?
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:15 Do 21.07.2016 | Autor: | korbinian |
Hallo leduart,
der Ton in diesem Forum war auch schon mal liebenswürdiger; aber vielleicht erklärt das ja die von mir beobachtete rückläufige Besucherfrequenz.
Gruß
korbinian
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:59 Do 21.07.2016 | Autor: | leduart |
Hallo
warum suchst du dir einen 6 Jahre zurückliegenden post aus, ich sehe zwar, dass das nicht sehr nett war, aber wenn du oft genug mit Lehrern zu tun hättest die so in ihrem Studium waren, würdest du es vielleichtverstehen, einem Schüler hätte ich anders geantwortet. Ausserdem steht ja in dem post, was man machen muss.
Eigentlich gut, wenn jemand unnettes Verhalten bemerkt und rügt, aber doch nicht nach 6 Jahren??
Gruß leduart
|
|
|
|