www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Beweis und Sup M
Beweis und Sup M < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis und Sup M: Aufgabe
Status: (Frage) überfällig Status 
Datum: 17:58 Do 23.10.2008
Autor: Hanz

Aufgabe
a) Beweisen Sie: Für alle x,y [mm] \in \IR [/mm] mit x <y gibt es ein r [mm] \in \IQ [/mm] mit x<r<y (man sagt dazu: [mm] "\IQ [/mm] liegt dicht in [mm] \IR"). [/mm]

b) Es sei [mm] \IQ(\wurzel{2}): [/mm] = [mm] {a+b\wurzel{2}: a,b \in \IQ} [/mm] und M:={x [mm] \in \IQ(\wurzel{2}): x<\wurzel{3}}. [/mm] Bestimmen Sie das sup M. Besitzt M auch ein Maximum?

c) Die Menge  [mm] \IQ(\wurzel{2}) [/mm] wird zu einem angeordneten Körper, wenn man +,* und < wie für reelle Zahlen erklärt (braucht hier nicht bewiesen zu werden). Hat in diesem angeordneten Körper jede nach oben beschränkte Teilmenge ein Supremum?

Hallo,
diese Aufgabe sollen wir bearbeiten, aber irgendwie komme ich hier nicht vorran.
Würde mich sehr über Lösungsansätze freuen.

        
Bezug
Beweis und Sup M: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Sa 25.10.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]