www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Beweis nach Ossa
Beweis nach Ossa < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis nach Ossa: Hilfestellung bei Verständnis
Status: (Frage) beantwortet Status 
Datum: 08:47 Sa 23.04.2016
Autor: Windbeutel

Aufgabe
Beweis der arithmestisch-geometrischen Mittel Ungleichung nach Ossa

Hallo,
ich habe den im Link

[]Link-Text

angefügten Beweis zur arithmestisch-geometrischen Mittel Ungleichung nach Ossa gefunden.
Viellicht fehlt es mir an spezifischen Vorkenntnissen. Jedenfalls verstehe ich den Beweis nicht komplett. Es würde mich freuen, wenn mir jemand auf die Sprünge helfen könnte.

Problematisch wird es für mich ab Zeile 12. Dort wird der Term xa -  [mm] a_{1}a_{2} [/mm] ins Spiel gebracht. Ich kann leider nicht erkennen, wo diese Formel hergenommen wird. Klar sie ähnelt der in Zeile 7 verwendeten (bei der n=2 berechnet wird), aber ich kann nicht erkennen, dass xa für die arithmetische Größe steht, bzw die dazu gegebene Formel erfüllt.


Richtig schwierig wird es für mich dann ab Zeile 14 ( Definiere b1....)
Da verstehe ich nun gar nicht was gemacht evtl kann ich deshalb auch nicht die in Zeile 15 aufgestellten Gleichungen und Ungleichungen nachvollziehen.

Letztes Problem ist, dass ich (evtl wegen des bisher nicht verstandenem) die Induktionsvoraussetzung in diesem Beweis nicht erkenne.

Würdemich freuen, wenn mir jemand auf die Sprünge helfen könnte.
L.G.


        
Bezug
Beweis nach Ossa: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Sa 23.04.2016
Autor: Leopold_Gast

"Problematisch wird es für mich ab Zeile 12. Dort wird der Term xa -  [mm]a_{1}a_{2}[/mm] ins Spiel gebracht. Ich kann leider nicht erkennen, wo diese Formel hergenommen wird."

Davor wird ja [mm]x[/mm] definiert durch

[mm]x = a_1 + a_n - a[/mm]

Jetzt multipliziere diese Gleichung mit [mm]a[/mm] durch. Subtrahiere anschließend auf beiden Seiten [mm]a_1 a_n[/mm].

"Richtig schwierig wird es für mich dann ab Zeile 14 ( Definiere b1....)"

Definitionen kann man nicht beweisen. Akzeptiere einfach, wie die [mm]b_j[/mm] definiert werden. Allerdings ist in der Zeile ein Schreibfehler. Es muß [mm]2 \leq j < n[/mm] heißen. Natürlich wird die Definition im Hinblick auf den zu führenden Beweis gemacht, um ihn übersichtlicher zu gestalten.
Das Produkt [mm]a_1 a_2 \cdots a_n[/mm] ist die [mm]n[/mm]-te Potenz des geometrischen Mittels. Durch eine längere Rechnung wird [mm]a_1 a_2 \cdots a_n \leq a^n[/mm] gezeigt. Wenn du in dieser Ungleichung die [mm]n[/mm]-te Wurzel ziehst, dann ist das die Induktionsaussage im Fall [mm]n[/mm]. Beachte die Definition von [mm]a[/mm] am Anfang des Induktionsschlusses.

"Letztes Problem ist, dass ich (evtl wegen des bisher nicht verstandenem) die Induktionsvoraussetzung in diesem Beweis nicht erkenne."

Die Induktionsvoraussetzung wird auf das Produkt [mm]b_1 b_2 \cdots b_{n-1}[/mm] angewandt. Nach Induktionsvoraussetzung gilt nämlich

[mm]\sqrt[n-1]{b_1 b_2 \cdots b_{n-1}} \leq \frac{1}{n-1} \left( b_1 + b_2 + \cdots + b_{n-1} \right)[/mm]

Und wenn du diese Ungleichung in die [mm](n-1)[/mm]-te Potenz erhebst, folgt:

[mm]b_1 b_2 \cdots b_{n-1} \leq \left( \frac{1}{n-1} \left( b_1 + b_2 + \ldots + b_{n-1} \right) \right)^{n-1}[/mm]

Wenn du danach wieder [mm]b_1[/mm] gemäß Definiton durch [mm]x = a_1 + a_n - a[/mm] ersetzt und [mm]b_2 = a_2 \, , \ b_3 = a_3 \, , \ldots \, , \ b_{n-1} = a_{n-1}[/mm] verwendest, siehst du, wie man darauf kommt.

Bezug
                
Bezug
Beweis nach Ossa: Danke, aber
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Mo 25.04.2016
Autor: Windbeutel

Aufgabe
S.o.

Zunächst möchte ich Dir für Deine Mühe danken.
Das hat mir generell schon einmal deutlich weiter geholfen.

Nur an einer Stelle bin ich nicht so ganz durchgestiegen, und zwar in Zeile 14 - 15.
Irgendwie komme ich immer noch nicht mit der Ungleichung in Zeile 15 zurecht.
Ich werdemich da nochmal dransetzen,evtl. komme ich ja noch dahinter.

Dir jedenfalls nocheinmal vielen Dank. Ohne Unterstützung wäre ich da wirklich nicht weiter gekommen
Grüße

Bezug
                        
Bezug
Beweis nach Ossa: Ich habs
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:45 Di 26.04.2016
Autor: Windbeutel

Bin durchgestiegen, danke nochmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]