www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Beweis mittes Vektoren
Beweis mittes Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mittes Vektoren: Höhen schneiden alle in 1 Pkt.
Status: (Frage) beantwortet Status 
Datum: 17:55 Di 14.11.2006
Autor: fabe.b

Aufgabe
Beweisen Sie mittels Vektoren, dass alle Höhen in einem allgemeinen Dreieck sich in einem Punkt schneiden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann mir jemand sagen, wie ich das beweisen kann?

        
Bezug
Beweis mittes Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Di 14.11.2006
Autor: chrisno

Hallo fabe.b,

hoffentlich gibt es noch einen einfacheren Weg. Mir fällt spontan nur folgendes ein:
- stelle die Höhen vektoriell dar.
Bestimme dazu die Ebene, in der das Dreieck liegt. In dieser Ebene bestimme jeweils einen Vektor, der senkrecht zu den Dreiecksseiten liegt. Dann hast Du diese als Richtungsvektoren für drei Geraden. Als Stützvektoren kannst Du die Eckpunkte des Dreiecks nehmen.
- Zeige nun, dass die drei Geraden sich in einem Punkt schneiden.


Bezug
        
Bezug
Beweis mittes Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Mi 15.11.2006
Autor: chrisno

Naja, dann habe ich mir überlegt, dass das koordinatenfrei laufen sollte. Ein Dreieck ist durch zwei Vektoren gegeben. die dritte Seite ergibt sich als Differenz der beiden.
Eine Höhe [mm] $\vec{h}$ [/mm] steht senkrecht auf einer Seite und lässt sich als Linearkombination der beiden anderen Seiten ausdrücken.
[mm] $\vec{h} [/mm] * [mm] (\vec{a} [/mm] - [mm] \vec{b}) [/mm] = 0$ und [mm] $\vec{h} [/mm] = [mm] \lambda \vec{a} [/mm] + [mm] \mu \vec{b}$ [/mm]
Das muß man für alle drei Seiten hinschreiben und dann feststellen, dass die Schnittpunkte paarweise immer die selben Koeffizienten in der Linearkombination bekommen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]