www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Beweis minimaler Rang Matrizen
Beweis minimaler Rang Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis minimaler Rang Matrizen: Frage: Warum ist der Rang klei
Status: (Frage) beantwortet Status 
Datum: 22:46 Do 21.04.2005
Autor: webbroki

Hallo!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe auf mehreren Seiten die folgende Aussage zum Rang von Matrizen gefunden: [mm]rang(AB) \le \min \{rang(A),rang(B) \}[/mm].
Kann mir jemand einen Beweis zeigen, warum dies gilt ??

Vom logischen müsste man beweisen, dass sich der Rand einer Matrix nicht erhöhen kann. D.h. die Anzahl der unabhängigen variablen ändert sich nicht.
Ich weiß aber nicht, wie ich das mathematisch formulieren kann :-(

Vielen Dank
Tom

        
Bezug
Beweis minimaler Rang Matrizen: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 23:40 Do 21.04.2005
Autor: choosy


> Hallo!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich habe auf mehreren Seiten die folgende Aussage zum Rang
> von Matrizen gefunden: rang(AB) [mm] \le \min \{rang(A),rang(B) \} [/mm]

Hi, also wenn man bedenkt, das man die Matrizen A und B auch als lineare Abbildungen zwischen 2 Vektorräumen betrachten kann ist es nicht so schwer.
Der Rang ist dann Nämlich einfach die Dimension des Bildes ( Range oder R(A):

rang(A) = dim R(A)
rang(B) = dim R(B)

Was ist jetzt AB als Abbildung? naja
ABx = A(Bx)) ,x aus dem Vektorraum also gilt hier (wenn wir mal als VR v nehmen:

$R(AB) = A( R(B) ) [mm] \subset [/mm] A(V) = R(A)$

das heist aber $rang AB = dim R(AB) [mm] \leq [/mm] dim R(A) = rang A$

was macht man nun mit B:
nun hat A vollen rang ist A bijektiv, fertig.
hat A nicht vollen Rang ist A nicht surjektiv, weshalb
$dim [mm] R(A|_{R(B)}) [/mm] < R(B)$ ist

Bezug
        
Bezug
Beweis minimaler Rang Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Fr 22.04.2005
Autor: bazzzty

Ich versuche es mal möglichst anschaulich, d.h. ohne den Weg über Dimensionen von Bildräumen. Und ich zeige mal nur, daß
[mm]\mathit{rang}(AB)\leq\mathit{rang}(B)[/mm], den anderen Teil kannst Du Dir dann selbst überlegen (denk' über die Transponierte nach!):

Der Rang von [mm]B[/mm] ist gleich dem Spaltenrang, d.h. der maximalen Zahl von lin. unabhängigen Spalten von [mm]B[/mm]. Das heißt, aus [mm]B=(b_1, b_2, \dots, b_m)[/mm] lassen sich [mm]\mathit{rang}(B)[/mm] Spalten [mm]S_B[/mm] so auswählen, daß diese Spalten lin. unabhängig sind, und die restlichen sich als Linearkombinationen ausdrücken lassen.

Die Matrix [mm]AB[/mm] besteht aus den Spalten [mm]\left(Ab_1, Ab_2,\dots)[/mm].
Unabhängig davon, ob die Spalten [mm]S_B[/mm] auf linear unabhängie Vektoren abgebildet wurden oder nicht (das entscheidet über [mm]=[/mm] oder [mm]<[/mm]), die Spalten [mm]Ab_i, i\not\in S_B[/mm] lassen sich immer noch in derselben Weise wie vorher durch Linearkombination der Spalten von [mm]Ab_i, i\in S_B[/mm] darstellen, der Spaltenrang von [mm]AB[/mm] ist also nie größer als der von [mm]B[/mm].


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]