www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Beweis: ggT ist Teiler
Beweis: ggT ist Teiler < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: ggT ist Teiler: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:55 Fr 04.01.2013
Autor: Neongelb

Aufgabe
Seien a, b, c [mm] \in \IZ [/mm] beliebig. Zeigen Sie.

[mm] \exists [/mm] x, y [mm] \in \IZ [/mm] mit ax + by = c [mm] \gdw [/mm] ggT(a,b) | c

Hi,
meine Lösung:

[mm] \Rightarrow [/mm]
Es gilt:

ggT(a, b) | b [mm] \Rightarrow [/mm] ggT(a,b) | by
ggT(a, b) | a [mm] \Rightarrow [/mm] ggT(a,b) | ax

ggT(a, b)  [mm] \Rightarrow [/mm] ggT(a,b) | a+b

deshalb gilt auch: ggT(a, b)  [mm] \Rightarrow [/mm] ggT(a,b) | ax+by

Die andere Richtung der Äquivalenz müsste dann ja im Prinzip nur andersrum gezeigt werden.

Ist das sowohl inhaltlich als auch formal korrekt?

Danke schonmal :).

Grüße


        
Bezug
Beweis: ggT ist Teiler: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Fr 04.01.2013
Autor: schachuzipus

Hallo Neongelb,


> Seien a, b, c [mm]\in \IZ[/mm] beliebig. Zeigen Sie.
>  
> [mm]\exists[/mm] x, y [mm]\in \IZ[/mm] mit ax + by = c [mm]\gdw[/mm] ggT(a,b) | c
>  Hi,
>  meine Lösung:
>  
> [mm]\Rightarrow[/mm]
>  Es gilt:
>  
> ggT(a, b) | b [mm]\Rightarrow[/mm] ggT(a,b) | by
>  ggT(a, b) | a [mm]\Rightarrow[/mm] ggT(a,b) | ax [ok]
>  
> ggT(a, b)  [mm]\Rightarrow[/mm] ggT(a,b) | a+b

Was soll das denn formal bedeuten??

Da steht sowas wie: [mm] $3\Rightarrow 3\mid [/mm] 5$

Was du meinst ist, dass aus [mm] $\ggT(a,b)\mid [/mm] by$ und [mm] $\ggT(a,b)\mid [/mm] ax$ folgt, dass auch [mm] $\ggT(a,b)\mid [/mm] ax+by$ gilt.

>  
> deshalb gilt auch: ggT(a, b)  [mm]\Rightarrow[/mm] ggT(a,b) | ax+by

Eieiei, formal haarsträubend!

Aber die Idee ist richtig! Schreibe das nur nochmal "gesund" auf.

>  
> Die andere Richtung der Äquivalenz müsste dann ja im
> Prinzip nur andersrum gezeigt werden.

Naja, wie? Mache das doch mal ...

Ich denke nicht, dass das nur "andersherum" geht ...

>  
> Ist das sowohl inhaltlich als auch formal korrekt?

Die eine Richtung ist inhaltl. korrekt, formal aber komisch ...

Die andere Richtung musst du noch machen!

>  
> Danke schonmal :).
>  
> Grüße
>  

LG

schachuzipus


Bezug
                
Bezug
Beweis: ggT ist Teiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Fr 04.01.2013
Autor: Neongelb


> Hallo Neongelb,
>  
>
> > Seien a, b, c [mm]\in \IZ[/mm] beliebig. Zeigen Sie.
>  >  
> > [mm]\exists[/mm] x, y [mm]\in \IZ[/mm] mit ax + by = c [mm]\gdw[/mm] ggT(a,b) | c
>  >  Hi,
>  >  meine Lösung:
>  >  
> > [mm]\Rightarrow[/mm]
>  >  Es gilt:
>  >  
> > ggT(a, b) | b [mm]\Rightarrow[/mm] ggT(a,b) | by
>  >  ggT(a, b) | a [mm]\Rightarrow[/mm] ggT(a,b) | ax [ok]
>  >  
> > ggT(a, b)  [mm]\Rightarrow[/mm] ggT(a,b) | a+b
>  
> Was soll das denn formal bedeuten??

Das soll bedeuten: ggT(a,b)|a [mm] \wedge [/mm] ggt(a,b)|b  [mm]\Rightarrow[/mm] ggT(a,b) | a+b

Ist das so korrekt? :P
  

> Da steht sowas wie: [mm]3\Rightarrow 3\mid 5[/mm]
>  
> Was du meinst ist, dass aus [mm]\ggT(a,b)\mid by[/mm] und
> [mm]\ggT(a,b)\mid ax[/mm] folgt, dass auch [mm]\ggT(a,b)\mid ax+by[/mm]
> gilt.

Okay, genau ich meinte: ggT(a,b)|ax [mm] \wedge [/mm] ggt(a,b)|by  [mm]\Rightarrow[/mm] ggT(a,b) | ax+by

> Eieiei, formal haarsträubend!
>  
> Aber die Idee ist richtig! Schreibe das nur nochmal
> "gesund" auf.
>  
> >  

> > Die andere Richtung der Äquivalenz müsste dann ja im
> > Prinzip nur andersrum gezeigt werden.
>  
> Naja, wie? Mache das doch mal ...
>  
> Ich denke nicht, dass das nur "andersherum" geht ...

Hm, okay:
Wenn ggT(a,b)|c, dann muss ein a, b [mm] \in \IZ [/mm] existieren, sodass ax + by = c, weil gilt:

ggT(a,b)|c [mm] \Rightarrow [/mm] ggT(a,b)|a [mm] \wedge [/mm] ggT(a,b)|b

Und weil ggT(a,b)|c muss ein x,y existieren, sodass ax +bx = 0

Okay das ist doch schwerer als gedacht. Geht das in die richtige Richtung?

> > Ist das sowohl inhaltlich als auch formal korrekt?
>  
> Die eine Richtung ist inhaltl. korrekt, formal aber komisch
> ...
>  
> Die andere Richtung musst du noch machen!
>  
> LG
>  
> schachuzipus
>  

Vielen Dank,
Grüße

Bezug
                        
Bezug
Beweis: ggT ist Teiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 So 06.01.2013
Autor: Neongelb

Ich bin weiterhin an einer Antwort interessiert. Wäre also nett wenn mir da jemand weiterhelfen könnte :P

Grüße

Bezug
                        
Bezug
Beweis: ggT ist Teiler: Antwort
Status: (Antwort) fertig Status 
Datum: 05:43 Mo 07.01.2013
Autor: miraculics

Hallo,

sei d=ggT(a,b).

Wenn du die Gleichung jetzt durch d teilst, erhälst du [mm] \bruch{a}{d}x+\bruch{b}{d}y=\bruch{c}{d}. [/mm]

Da d|a und d|b gilt (also deren Quotienten ganze Zahlen sind) und x und y auch ganze Zahlen sind, was gilt dann für [mm] \bruch{c}{d} [/mm] ?

Ich würd es in der Richtung beweisen.

Gruß Miraculics

Bezug
                                
Bezug
Beweis: ggT ist Teiler: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:46 Mo 07.01.2013
Autor: Neongelb

Hi,

Dann gilt auch d|c.
Dies ist jedoch wieder der Beweis in [mm] \Rightarrow [/mm] -Richtung oder?
Kannst du mir vielleicht auch beim Beweis in [mm] \Leftarrow [/mm] -Richtung einen Tipp geben?

Danke dir :P,

Grüße

Bezug
                                        
Bezug
Beweis: ggT ist Teiler: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 09.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]